Chin. Phys. Lett.  2014, Vol. 31 Issue (10): 102401    DOI: 10.1088/0256-307X/31/10/102401
NUCLEAR PHYSICS |
Geometric Scaling in New Combined Hadron-Electron Ring Accelerator Data
ZHOU Xiao-Jiao1, QI Lian1, KANG Lin1, ZHOU Dai-Cui2, XIANG Wen-Chang1,2**
1College of Physics and Electronics Science, Guizhou Normal University, Guiyang 550001
2Institute of Particle Physics, Huazhong Normal University, Wuhan 430079
Cite this article:   
ZHOU Xiao-Jiao, QI Lian, KANG Lin et al  2014 Chin. Phys. Lett. 31 102401
Download: PDF(572KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We study the geometric scaling in the new combined data of the hadron-electron ring accelerator by using the Golec-Biernat–Wüsthoff model. It is found that the description of the data is improved once the high accurate data are used to determine the model parameters. The value of x0 extracted from the fit is larger than the one from the previous study, which indicates a larger saturation scale in the new combined data. This makes more data located in the saturation region, and our approach is more reliable. This study lets the saturation model confront such high precision new combined data, and tests geometric scaling with those data. We demonstrate that the data lie on the same curve, which shows the geometric scaling in the new combined data. This outcome seems to support that the gluon saturation would be a relevant mechanism to dominate the parton evolution process in deep inelastic scattering, due to the fact that the geometric scaling results from the gluon saturation mechanism.
Published: 31 October 2014
PACS:  24.85.+p (Quarks, gluons, and QCD in nuclear reactions)  
  25.75.-q (Relativistic heavy-ion collisions (collisions induced by light ions studied to calibrate relativistic heavy-ion collisions should be classified under both 25.75.-q and sections 13 or 25 appropriate to the light ions))  
  21.10.Ft (Charge distribution)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/10/102401       OR      https://cpl.iphy.ac.cn/Y2014/V31/I10/102401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHOU Xiao-Jiao
QI Lian
KANG Lin
ZHOU Dai-Cui
XIANG Wen-Chang
[1] Iancu E et al 2002 arXiv:hep-ph/0202270
[2] Jalilian-Marian J et al 1997 Nucl. Phys. B 504 415
[3] Jalilian-Marian J 1998 Phys. Rev. D 59 014014
[4] Iancu E 2001 Nucl. Phys. A 692 583
[5] Ferreiro E 2002 Nucl. Phys. A 703 489
[6] Kovchegov Y 1999 Phys. Rev. D 60 034009
[7] Xiang W 2009 Phys. Rev. D 79 014012
[8] Stasto A et al 2001 Phys. Rev. Lett. 86 596
[9] Kozlov M et al 2007 J. High Energy Phys. 0710 20
[10] Golec-Biernat K et al 1998 Phys. Rev. D 59 014017
[11] Iancu E et al 2002 Nucl. Phys. A 708 327
[12] Iancu E et al 2004 Phys. Lett. B 590 199
[13] Xiang W 2010 Eur. Phys. J. A 46 91
[14] Aaron F et al 2010 J. High Energy Phys. 1001 109
[15] Adloff C et al 2001 Eur. Phys. J. C 21 33
[16] Breitweg J et al 2000 Phys. Lett. B 487 53
[17] Arneodo M et al 1997 Nucl. Phys. B 483 3
[18] Aaron F et al 2008 Phys. Lett. B 665 139
[19] Albacete J et al 2009 Phys. Rev. D 80 034031
[20] Hu J et al 2014 Chin. Phys. Lett. 31 032501
[21] Albacete J et al 2010 Phys. Rev. Lett. 105 162301
[22] Xiang W 2010 Phys. Rev. D 81 094004
Related articles from Frontiers Journals
[1] Lei Wang, Jin-Wen Kang, Qing Zhang, Shuwan Shen, Wei Dai, Ben-Wei Zhang, and Enke Wang. Jet Radius and Momentum Splitting Fraction with Dynamical Grooming in Heavy-Ion Collisions[J]. Chin. Phys. Lett., 2023, 40(3): 102401
[2] Si-Xue Qin and Craig D. Roberts. Resolving the Bethe–Salpeter Kernel[J]. Chin. Phys. Lett., 2021, 38(7): 102401
[3] Shi-Jun Mao. Deconfinement Phase Transition with External Magnetic Field in the Friedberg–Lee Model[J]. Chin. Phys. Lett., 2016, 33(11): 102401
[4] Wen-Chang Xiang, Zhi-Hai Hu, Wan-Song Liu, Jun-Jin Peng, Shao-Hong Cai. Analysis of the Diffractive Deep Inelastic Scattering Data with Running Coupling and Gluon Number Fluctuations[J]. Chin. Phys. Lett., 2016, 33(08): 102401
[5] Qing-Dong Wu, Ji Zeng, Yuan-Yuan Hu, Quan-Bo Li, Dai-Cui Zhou, Wen-Chang Xiang. Geometric Scaling Analysis of Deep Inelastic Scattering Data Including Heavy Quarks[J]. Chin. Phys. Lett., 2016, 33(01): 102401
[6] Jiechen Xu, Jinfeng Liao, Miklos Gyulassy. Consistency of Perfect Fluidity and Jet Quenching in Semi-Quark-Gluon Monopole Plasmas[J]. Chin. Phys. Lett., 2015, 32(09): 102401
[7] XIA Cheng-Jun, PENG Guang-Xiong, HOU Jia-Xun. Finite Size Effect on the in-Medium Chiral Condensate at Finite Density[J]. Chin. Phys. Lett., 2014, 31(04): 102401
[8] LU Chang-Fang, LÜ Xiao-Fu. Influence of Quark Current Mass on Quark Condensate at Finite Temperature[J]. Chin. Phys. Lett., 2013, 30(9): 102401
[9] LI Han-Lin, ZHANG Ben-Wei, WANG En-Ke. Jet Energy Shift due to Non-Perturbative QCD Effects in p+p Collisions Studied with PYTHIA[J]. Chin. Phys. Lett., 2013, 30(5): 102401
[10] WANG Hong-Min, HOU Zhao-Yu, SUN Xian-Jing. Influence of the Nucleon Hard Partons Distribution on J/Ψ Suppression in a GMC Framework[J]. Chin. Phys. Lett., 2010, 27(5): 102401
[11] ZHU Wei, SHEN Zhen-Qi, RUAN Jian-Hong. Can a Chaotic Solution in the QCD Evolution Equation Restrain High-Energy Collider Physics?[J]. Chin. Phys. Lett., 2008, 25(10): 102401
[12] HE Deng-Ke, JIANG Yu, FENG Hong-Tao, SUN Wei-Min, ZONG Hong-Shi,. Quark-Number Susceptibility at Finite Chemical Potential and Zero Temperature[J]. Chin. Phys. Lett., 2008, 25(2): 102401
[13] DAI Lian-Rong, ZHANG Dan, LI Chun-Ran, TONG Lei. Structures of NΩ and △Ω Dibaryons[J]. Chin. Phys. Lett., 2007, 24(2): 102401
[14] LONG Jia-Li, HE Ze-Jun, , MA Yu-Gang,. Photon Production in a Chemically Equilibrating Quark--Gluon Plasma at Finite Baryon Density: Complete Leading Order Results[J]. Chin. Phys. Lett., 2006, 23(4): 102401
[15] HE Ze-Jun, LONG Jia-Li, MA Yu-Gang,. Hard Photons from a Non-Equilibrated Quark--Gluon Plasma with Finite Baryon Density at a Two-Loop Level[J]. Chin. Phys. Lett., 2005, 22(10): 102401
Viewed
Full text


Abstract