Chin. Phys. Lett.  2014, Vol. 31 Issue (10): 100602    DOI: 10.1088/0256-307X/31/10/100602
GENERAL |
Verification and Application of the Border Effect in Precision Measurement
ZHOU Wei1**, LI Zhi-Qi1, BAI Li-Na1, XUAN Zong-Qiang1, CHEN Fa-Xi2, YU Jian-Guo1, GAO Jian-Ning1, MIAO Miao1, DONG Shao-Feng1, SONG Hui-Min1, WEI Zhong1, YE Yun-Xia1
1Department of Measurement and Instrumentation, Xidian University, Xi'an 710071
2National Time Service Center, Chinese Academy of Sciences, Xi'an 710600
Cite this article:   
ZHOU Wei, LI Zhi-Qi, BAI Li-Na et al  2014 Chin. Phys. Lett. 31 100602
Download: PDF(565KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Detection resolution is crucial for improvement of the measurement precision in the device and instrument. Because of the limited resolution, a fuzzy area with the truth-value as its center is found during the detection. The finding for improving the measurement precision by the border of fuzzy area is first introduced. The higher resolution can be captured by the higher resolution stability which makes the different detection results of the inner and outer fuzzy area on the border reflected more sensitively between the measure and the reference quantity. The system resolution obtained only depends on the stability of measurement resolution, which is much better than the measurement resolution itself. Based on the finding, the measurement precision can be improved two or three orders of magnitude. The finding can be used in various kinds of high precision measurement.

Published: 31 October 2014
PACS:  06.30.Ft (Time and frequency)  
  06.20.Dk (Measurement and error theory)  
  07.05.Fb (Design of experiments)  
  07.50.Qx (Signal processing electronics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/10/100602       OR      https://cpl.iphy.ac.cn/Y2014/V31/I10/100602
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHOU Wei
LI Zhi-Qi
BAI Li-Na
XUAN Zong-Qiang
CHEN Fa-Xi
YU Jian-Guo
GAO Jian-Ning
MIAO Miao
DONG Shao-Feng
SONG Hui-Min
WEI Zhong
YE Yun-Xia

[1] Escher B M, de Matos Filho R L and Davidovich L 2011 Nat. Phys. 7 406
[2] Sturm S et al 2014 Nature 506 467
[3] Schröder G F, Levitt M and Brunger A T 2010 Nature 464 1218
[4] Kuno H J 1964 IEEE Trans. Electron Devices 11 151
[5] Visweswariah C, Haring R A and Conn A R 2000 IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 19 679
[6] Deen M J 2004 IEE Proc. Circuits Devices Syst. 151 93
[7] Taraldsen G 2006 Metrologia 43 539
[8] Ihlefeld C M, Burns B M and Youngquist R C 2013 IEEE Trans. Instrum. Meas. 62 205
[9] Lee K Y et al 2012 IEEE Trans. Instrum. Meas. 61 2924
[10] Zhou W 1992 Proc. IEEE Frequency Control Symp. (27–29 May 1992 Hershey, PA) p 270
[11] Li Z Q, Zhou W, Chen F X and Liu C G 2010 Chin. Phys. B 19 090601
[12] Jiang Y Y et al 2011 Nat. Photon. 5 158
[13] Zhou W and Liang P 1994 Instrumentation and Measurement Technology Conference, IMTC/94. Conference Proceedings. 10th Anniversary, IEEE (10–12 May 1994 Hamamatsu, Japan) p 810
[14] Zhou W, Zhou H and Fan W J 2008 Proceedings of the IEEE International Frequency Control Symposium (19–21 May Honolulu, USA) p 468
[15] Diddams S A, Bergquist J C, Jefferts S R and Oates C W 2004 Science 306 1318

Related articles from Frontiers Journals
[1] Bing-Kun Lu, Zhen Sun, Tao Yang, Yi-Ge Lin, Qiang Wang, Ye Li, Fei Meng, Bai-Ke Lin, Tian-Chu Li, and Zhan-Jun Fang. Improved Evaluation of BBR and Collisional Frequency Shifts of NIM-Sr2 with $7.2 \times 10^{-18}$ Total Uncertainty[J]. Chin. Phys. Lett., 2022, 39(8): 100602
[2] Xiang Zhang, Xue Deng, Qi Zang, Dongdong Jiao, Jing Gao, Dan Wang, Qian Zhou, Jie Liu, Guanjun Xu, Ruifang Dong, Tao Liu, and Shougang Zhang. Coherent Optical Frequency Transfer via a 490 km Noisy Fiber Link[J]. Chin. Phys. Lett., 2022, 39(4): 100602
[3] Dong-Jie Wang, Xiang Zhang, Jie Liu, Dong-Dong Jiao, Xue Deng, Jing Gao, Qi Zang, Dan Wang, Tao Liu, Rui-Fang Dong, and Shou-Gang Zhang. Novel Polarization Control Approach to Long-Term Fiber-Optic Frequency Transfer[J]. Chin. Phys. Lett., 2020, 37(9): 100602
[4] Si-Jia Chao, Kai-Feng Cui, Shao-Mao Wang, Jian Cao, Hua-Lin Shu, Xue-Ren Huang. Observation of $^1\!S_0$$\rightarrow$$^3\!P_0$ Transition of a $^{40}$Ca$^+$-$^{27}$Al$^+$ Quantum Logic Clock[J]. Chin. Phys. Lett., 2019, 36(12): 100602
[5] Wen-Bing Li, Qiang Hao, Yuan-Bo Du, Shao-Qing Huang, Peter Yun, Ze-Huang Lu. Demonstration of a Sub-Sampling Phase Lock Loop Based Microwave Source for Reducing Dick Effect in Atomic Clocks[J]. Chin. Phys. Lett., 2019, 36(7): 100602
[6] Chao-qun Ma, Li-Fei Wu, Jiao Gu, Yan-He Chen, Guo-Qing Chen. Delay Effect on Coherent Transfer of Optical Frequency Based on a Triple-Pass Scheme[J]. Chin. Phys. Lett., 2018, 35(8): 100602
[7] Yu-Xin Zhuang, Dai-Ting Shi, Da-Wei Li, Yi-Gen Wang, Xiao-Na Zhao, Jian-Ye Zhao, Zhong Wang. Erratum: An Accurate Frequency Control Method and Atomic Clock Based on Coherent Population Beating Phenomenon [Chin. Phys. Lett. 33(2016)040601][J]. Chin. Phys. Lett., 2017, 34(10): 100602
[8] Zhao-Min Jia, Xu-Hai Yang, Bao-Qi Sun, Xiao-Ping Zhou, Bo Xiang, Xin-Yu Dou. Direct Digital Frequency Control Based on the Phase Step Change Characteristic between Signals[J]. Chin. Phys. Lett., 2017, 34(9): 100602
[9] Zhao-Yang Tai, Lu-Lu Yan, Yan-Yan Zhang, Xiao-Fei Zhang, Wen-Ge Guo, Shou-Gang Zhang, Hai-Feng Jiang. Transportable 1555-nm Ultra-Stable Laser with Sub-0.185-Hz Linewidth[J]. Chin. Phys. Lett., 2017, 34(9): 100602
[10] Jie Zhang, Ke Deng, Jun Luo, Ze-Huang Lu. Direct Laser Cooling Al$^+$ Ion Optical Clocks[J]. Chin. Phys. Lett., 2017, 34(5): 100602
[11] Hui Liu, Xi Zhang, Kun-Liang Jiang, Jin-Qi Wang, Qiang Zhu, Zhuan-Xian Xiong, Ling-Xiang He, Bao-Long Lyu. Realization of Closed-Loop Operation of Optical Lattice Clock Based on $^{171}$Yb[J]. Chin. Phys. Lett., 2017, 34(2): 100602
[12] Xue Deng, Jie Liu, Dong-Dong Jiao, Jing Gao, Qi Zang, Guan-Jun Xu, Rui-Fang Dong, Tao Liu, Shou-Gang Zhang. Coherent Transfer of Optical Frequency over 112km with Instability at the 10$^{-20}$ Level[J]. Chin. Phys. Lett., 2016, 33(11): 100602
[13] Meng-Jiao Zhang, Hui Liu, Xi Zhang, Kun-Liang Jiang, Zhuan-Xian Xiong, Bao-Long LÜ, Ling-Xiang He. Hertz-Level Clock Spectroscopy of $^{171}$Yb Atoms in a One-Dimensional Optical Lattice[J]. Chin. Phys. Lett., 2016, 33(07): 100602
[14] Kang-Kang Liu, Ru-Chen Zhao, Wei Gou, Xiao-Hu Fu, Hong-Li Liu, Shi-Qi Yin, Jian-Fang Sun, Zhen Xu, Yu-Zhu Wang. A Single Folded Beam Magneto-Optical Trap System for Neutral Mercury Atoms[J]. Chin. Phys. Lett., 2016, 33(07): 100602
[15] Yu-Xin Zhuang, Dai-Ting Shi, Da-Wei Li, Yi-Gen Wang, Xiao-Na Zhao, Jian-Ye Zhao, Zhong Wang. An Accurate Frequency Control Method and Atomic Clock Based on Coherent Population Beating Phenomenon[J]. Chin. Phys. Lett., 2016, 33(04): 100602
Viewed
Full text


Abstract