Chin. Phys. Lett.  2014, Vol. 31 Issue (10): 100502    DOI: 10.1088/0256-307X/31/10/100502
GENERAL |
The Heisenberg Model after an Interaction Quench
ZHOU Zong-Li1, LI Min1, YE Jian1, LI Dong-Peng2, LOU Ping2, ZHANG Guo-Shun1**
1School of Science, Anhui Agricultural University, Hefei 230036
2School of Physics and Material Science, Anhui University, Hefei 230039
Cite this article:   
ZHOU Zong-Li, LI Min, YE Jian et al  2014 Chin. Phys. Lett. 31 100502
Download: PDF(437KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract In accordance with the recent experimental progress of the controllable spin-spin interactions, the Heisenberg model after an interaction quench is discussed. The Hamiltonian of the system out of equilibrium is introduced and treated by the flow equation method. As a result, the spectrum and zero-point spin deviation are obtained with the help of time-evolved operators. Additionally, other methods are applied to verify the results in mathematics. It is found that the observables show an oscillating behavior. The feasible experimental scheme of the concerned scenario is also mentioned.
Published: 31 October 2014
PACS:  05.10.Cc (Renormalization group methods)  
  05.70.Ln (Nonequilibrium and irreversible thermodynamics)  
  76.60.Es (Relaxation effects)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/10/100502       OR      https://cpl.iphy.ac.cn/Y2014/V31/I10/100502
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHOU Zong-Li
LI Min
YE Jian
LI Dong-Peng
LOU Ping
ZHANG Guo-Shun
[1] Greiner M, Mandel O, Esslinger T, Hansch T W and Bloch I 2002 Nature 415 39
[2] Zhu F Y, Tu T, Hao X J, Guo G C and Guo G P 2009 Chin. Phys. Lett. 26 050301
[3] Bloch I, Dalibard J and Zwerger W 2008 Rev. Mod. Phys. 80 885
[4] Kinoshita T, Wenger T and Weiss D S 2006 Nature 440 900
[5] Rigol M, Muramatsu A and Olshanii M 2006 Phys. Rev. A 74 053616
[6] Zhou Z L, Zhang G S and Lou P 2010 Chin. Phys. Lett. 27 067305
[7] Ren J, Wu Y Z and Zhu S Q 2012 Chin. Phys. Lett. 29 060305
[8] Polkovnikov A, Sengupta K, Silva A and Vengalattore M 2011 Rev. Mod. Phys. 83 863
[9] Duan L M, Demler E and Lukin M D 2003 Phys. Rev. Lett. 91 090402
[10] Simon J, Bakr W S Ma R C, Tai M E, Preiss P M and Greiner M 2011 Nature 472 307
[11] Moeckel M and Kehrein S 2008 Phys. Rev. Lett. 100 175702
[12] Kehrein S 2006 The Flow Equation Approach to Many-Particle Systems ed Kehrein S (Berlin: Springer)
[13] Cazalilla M A 2006 Phys. Rev. Lett. 97 156403
[14] Foini L, Cugliandolo L F and Gambassi A 2011 Phys. Rev. B 84 212404
[15] Pollmann F, Haque M and Dora B 2013 Phys. Rev. B 87 041109
Related articles from Frontiers Journals
[1] Xi-Ci Yang, Z. Y. Xie, and Xiao-Tao Yang. Exploring Explicit Coarse-Grained Structure in Artificial Neural Networks[J]. Chin. Phys. Lett., 2023, 40(2): 100502
[2] Teng Liu, Gao-Ke Hu, Jia-Qi Dong, Jing-Fang Fan, Mao-Xin Liu, and Xiao-Song Chen. Renormalization Group Theory of Eigen Microstates[J]. Chin. Phys. Lett., 2022, 39(8): 100502
[3] X. F. Liu, Y. F. Fu, W. Q. Yu, J. F. Yu, and Z. Y. Xie. Variational Corner Transfer Matrix Renormalization Group Method for Classical Statistical Models[J]. Chin. Phys. Lett., 2022, 39(6): 100502
[4] Zhen Ning, Bo Fu, Qinwei Shi, and Xiaoping Wang. Universal Minimum Conductivity in Disordered Double-Weyl Semimetal[J]. Chin. Phys. Lett., 2020, 37(11): 100502
[5] Jing Chen, Hai-Jun Liao, Hai-Dong Xie, Xing-Jie Han, Rui-Zhen Huang, Song Cheng, Zhong-Chao Wei, Zhi-Yuan Xie, Tao Xiang. Phase Transition of the q-State Clock Model: Duality and Tensor Renormalization[J]. Chin. Phys. Lett., 2017, 34(5): 100502
[6] WANG Shun, XIE Zhi-Yuan, CHEN Jing, Bruce Normand, XIANG Tao. Phase Transitions of Ferromagnetic Potts Models on the Simple Cubic Lattice[J]. Chin. Phys. Lett., 2014, 31(07): 100502
[7] MA Yong-Jun, WANG Jia-Xiang, XU Xin-Ye, WEI Qi, Sabre Kais. Error Analysis of the Density-Matrix Renormalization Group Algorithm for a Chain of Harmonic Oscillators[J]. Chin. Phys. Lett., 2014, 31(06): 100502
[8] WANG Xiao-Hong**, ZHOU Quan . Renormalization Group Analysis of Weakly Rotating Turbulent Flows[J]. Chin. Phys. Lett., 2011, 28(12): 100502
[9] WANG Meng-Xiong, CAI Jian-Wei, XIE Zhi-Yuan, CHEN Qiao-Ni, ZHAO Hui-Hai, WEI Zhong-Chao. Investigation of the Potts Model on Triangular Lattices by the Second Renormalization of Tensor Network States[J]. Chin. Phys. Lett., 2010, 27(7): 100502
[10] TU Tao, WANG Lin-Jun, HAO Xiao-Jie, GUO Guang-Can, GUO Guo-Ping. Renormalization Group Method for Soliton Evolution in a Perturbed KdV Equation[J]. Chin. Phys. Lett., 2009, 26(6): 100502
[11] LIU Zheng-Feng, WANG Xiao-Hong,. Derivation of a Nonlinear Reynolds Stress Model Using Renormalization Group Analysis and Two-Scale Expansion Technique[J]. Chin. Phys. Lett., 2008, 25(2): 100502
Viewed
Full text


Abstract