CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Room-Temperature Magnetism Realized by Doping Fe into Ferroelectric LiTaO3 |
SONG Ying-Jie1,2, ZHANG Qing-Hua2, SHEN Xi2, NI Xiao-Dong1**, YAO Yuan2, YU Ri-Cheng2** |
1Department of Physics, University of Science and Technology Beijing, Beijing 100083 2Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190
|
|
Cite this article: |
SONG Ying-Jie, ZHANG Qing-Hua, SHEN Xi et al 2014 Chin. Phys. Lett. 31 017501 |
|
|
Abstract We synthesize LiTa1?xFexO3?σ (LTFO) ceramics by the conventional solid-state reaction method. The samples remain single phase up to x=0.09. The magnetic measurements show that the doping of Fe successfully realizes ferromagnetism of LTFO at room temperature. The dielectric measurements indicate that LTFO is ferroelectric, similarly to LiTaO3 (LTO), but its ferroelectric Curie temperature seems to decrease with the increasing Fe content. By means of doping Fe ions into LTO, the coexistence of spontaneous electric polarization and spontaneous magnetic moment is realized at room temperature.
|
|
Received: 10 September 2013
Published: 28 January 2014
|
|
PACS: |
75.85.+t
|
(Magnetoelectric effects, multiferroics)
|
|
75.47.Lx
|
(Magnetic oxides)
|
|
76.50.+g
|
(Ferromagnetic, antiferromagnetic, and ferrimagnetic resonances; spin-wave resonance)
|
|
31.15.es
|
(Applications of density-functional theory (e.g., to electronic structure and stability; defect formation; dielectric properties, susceptibilities; viscoelastic coefficients; Rydberg transition frequencies))
|
|
|
|
|
[1] Tascu S, Moretti P, Kostritskii S and Jacquier B 2003 Opt. Mater. 24 297 [2] Sokolska I and Kuck S 1998 Spectroc. Acta Pt. A-Molec. Biomolec. Spectr. 54 1695 [3] Ravez J, Joo G T and Bonnet J P 1988 Ferroelectrics 81 1269 [4] Sinclair D C and West A R 1989 Phys. Rev. B 39 13486 [5] Kimura T, Goto T, Shintani H, Ishizaka K, Arima T and Tokura Y 2003 Nature 426 55 [6] Tian Y F, Ding J F, Lin W N, Chen Z H, David A, He M, Hu W J, Chen L and Wu T 2013 Sci. Rep. 3 1094 [7] Cui Y, Peng H, Wu S, Wang R and Wu T 2013 ACS Appl. Mater. Interfaces 5 1213 [8] Kimura T, Sekio Y, Nakamura H, Siegrist T and Ramirez A P 2008 Nat. Mater. 7 291 [9] Ikeda N, Ohsumi H, Ohwada K, Ishii K, Inami T, Kakurai K, Murakami Y, Yoshii K, Mori S, Horibe Y and Kito H 2005 Nature 436 1136 [10] Xu B, Yin K B, Lin J, Xia Y D, Wan X G, Yin J, Bai X J, Du J and Liu Z G 2009 Phys. Rev. B 79 134109 [11] Maier R, Cohn J L, Neumeier J J and Bendersky L A 2001 Appl. Phys. Lett. 78 2536 [12] Lin Y H, Yuan J C, Zhang S Y, Zhang Y, Liu J, Wang Y and Nan C W 2009 Appl. Phys. Lett. 95 033105 [13] Wei X K, Su Y T, Sui Y, Zhang Q H, Yao Y, Jin C Q and Yu R C 2011 J. Appl. Phys. 110 114112 [14] Wei X K, Zou T, Wang F, Zhang Q H, Sun Y, Gu L, Hirata A, Chen M W, Yao Y, Jin C Q and Yu R C 2012 J. Appl. Phys. 111 073904 [15] Ye Z G, Vondermuhll R, Ravez J and Hagenmuller P 1988 J. Mater. Res. 3 112 [16] Shimada S, Kodaira K and Matsushita T 1984 J. Mater. Sci. 19 1385 [17] Ye Z G, Vondermuhll R and Ravez J 1989 J. Phys. Chem. Solids 50 809 [18] Cohen R E 1992 Nature 358 136 [19] Lin F T, Jiang D M, Ma X M and Shi W Z 2008 J. Magn. Magn. Mater. 320 691 [20] Nakayama H and Katayama-Yoshida H 2001 Jpn. J. Appl. Phys. 40 L1355 [21] Zeng F, Sheng P, Tang G S, Pan F, Yan W S, Hu F C, Zou Y, Huang Y Y, Jiang Z and Guo D 2012 Mater. Chem. Phys. 136 783 [22] Zriouil M, Assani A, Ghrabage S, Lotfi E and Elouadi B 1998 J. Korean Phys. Soc. 32 S1845 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|