CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Trapping Behavior of He in Ti Revisited by ab initio Calculations |
WAN Chu-Bin1, ZHOU Xiao-Song2, LI Shi-Na1, ZHANG Hui-Jun1, LIANG Jian-Hua2, PENG Shu-Ming2, JU Xin1** |
1Department of Physics, University of Science and Technology Beijing, Beijing 100083 2Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900
|
|
Cite this article: |
WAN Chu-Bin, ZHOU Xiao-Song, LI Shi-Na et al 2014 Chin. Phys. Lett. 31 017102 |
|
|
Abstract We report a detailed ab initio study of the trapping behavior of interstitial helium atoms (IHAs) in hcp Ti. The tetrahedral interstitial site for one He is confirmed to be the most stable IHA configuration, but the most favorable interstitial site comprises two adjacent octahedral sites for two helium atoms. The octahedral IHA can trap another IHA regardless of the site where it is initially located, whereas the tetrahedral IHA cannot. Hybridization among the different states is responsible for the stable order, which has significant implications for He clustering and bubble nucleation that can affect material performance in future fusion reactors. These results provide the basis for the development of improved atomistic models.
|
|
Received: 16 September 2013
Published: 28 January 2014
|
|
PACS: |
71.55.-i
|
(Impurity and defect levels)
|
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
61.82.-d
|
(Radiation effects on specific materials)
|
|
|
|
|
[1] Ortiz C J, Caturla M J, Fu C C and Willaime F 2009 Phys. Rev. B 80 134109 [2] Farrell K, Maziasz P J, Lee E H and Mansur L K 1983 Radiat. Eff. 78 277 [3] Stoller R E 1990 J. Nucl. Mater. 174 289 [4] Van-der-Schaaf B, Gelles D S, Jitsukawa S, Kimura A, Klueh R L, M?slang A and Odette G R 2000 J. Nucl. Mater. 283 52 [5] Stoller R E and Odette G R 1985 J. Nucl. Mater. 131 118 [6] Wilson W D and Johnson R A 1972 Interatomic Potentials and Simulation of Lattice Defects (New York: Plenum) vol 375 p 375 [7] Li Y, Deng A H, Zhou Y L, Zhou B, Wang K, Hou Q, Shi L Q, Qin X B and Wang B Y 2012 Chin. Phys. Lett. 29 047801 [8] Zhang L, He Z J, Liu C Z, Wang X F and Shi L Q 2012 Chin. Phys. Lett. 29 012501 [9] Wan C B, Zhou X S, Wang Y T, Li S N, Ju X and Peng S M 2014 J. Nucl. Mater. 444 142 [10] Zhang L R, Deng A H, Yang D X, Zhou Y L, Hou Q, Shi L Q, Zhong Y R and Wang B Y 2011 Chin. Phys. Lett. 28 077802 [11] Seletskaia T, Osetsky Y, Stoller R E and Stocks G M 2008 Phys. Rev. B 78 134103 [12] Fu C C and Willaime F 2005 Phys. Rev. B 72 064117 [13] Becquart C S and Domain C 2006 Phys. Rev. Lett. 97 196402 [14] Lu Y F, Shi L Q, Ding W and Long X G 2012 Chin. Phys. Lett. 29 013102 [15] Wang Y L, Liu S, Rong L J and Wang Y M 2010 J. Nucl. Mater. 402 55 [16] Kresse G and Hafner J 1993 Phys. Rev. B 47 558 [17] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 [18] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15 [19] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133 [20] Bl?chl P E 1994 Phys. Rev. B 50 17953 [21] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 [22] Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J and Fiolhais C 1992 Phys. Rev. B 46 6671 [23] Boulware D G and Desser S 1972 Phys. Lett. B 40 227 [24] Picraux S T and Vook F L 1974 J. Nucl. Mater. 53 246 [25] Seletskaia T, Osetsky Y, Stoller R E and Stocks G M 2005 Phys. Rev. Lett. 94 046403 [26] Shang S L, Hector L G, Wang Y and Liu Z K 2011 Phys. Rev. B 83 224104 [27] Tunde R A, Scandolo S, Mazzarello R, Nsengiyumva S, H ?rting M and Thomas B D 2009 Philos. Mag. 89 1629 [28] Le-Bacq O, Willaime F and Pasturel A 1999 Phys. Rev. B 59 8508 [29] Hashimoto E, Smirnov E A and Kino T 1984 J. Phys. F: Met. Phys. 14 L215 [30] Shestopal V O 1966 Sov. Phys. Solid State 7 2798 [31] Vassen R, Trinkaus H and Jung P 1991 J. Nucl. Mater. 183 1 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|