THE PHYSICS OF ELEMENTARY PARTICLES AND FIELDS |
|
|
|
|
Enhanced Correlation of Electron-Positron Pair in Two and Three Dimensions |
TANG Suo1, XIE Bai-Song1**, WANG Hong-Yu2, LIU Jie3, FU Li-Bin3, YU Ming-Young4,5 |
1Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 2Department of Physics, Anshan Normal University, Anshan 114005 3Institute of Applied Physics and Computational Mathematics, P. O. Box 8009, Beijing 100088 4Institute for Fusion Theory and Simulation, Department of Physics, Zhejiang University, Hangzhou 310027 5Institut für Theoretische Physik I, Ruhr-Universi?t Bochum, D-44780 Bochum, Germany
|
|
Cite this article: |
TANG Suo, XIE Bai-Song, WANG Hong-Yu et al 2014 Chin. Phys. Lett. 31 011203 |
|
|
Abstract Early time electron-positron correlation in vacuum pair-production in an external field is investigated. The entangled electron and positron wave functions are obtained analytically in the configuration and momentum spaces. It is shown that, relative to that of the one-dimensional theory, two- and three-dimensional calculations yield enhanced spatial correlation and broadened momentum spectra. In fact, at early times the electron and positron almost coincide spatially. The correlation also depends on the direction of the applied field. For the spatial correlation, the transverse correlation is stronger than the longitudinal correlation.
|
|
Received: 15 October 2013
Published: 28 January 2014
|
|
|
|
|
|
[1] Greiner W, Müller B and Rafelski J 1985 Quantum Electrodynamics of Strong Field (Berlin Heidelberg: Springer-Verlag) [2] Sauter F 1931 Z. Phys. 69 742 [3] Schwinger J 1951 Phys. Rev. 82 664 [4] Kluger Y, Eisenberg J M, Svetitsky B, Cooper F and Mottola E 1991 Phys. Rev. Lett. 67 2427 [5] Alkofer R, Hecht M B, Roberts C D, Schmidt S M and Vinnik D V 2001 Phys. Rev. Lett. 87 193902 [6] Krekora P, Su Q and Grobe R 2004 Phys. Rev. Lett. 93 043004 [7] Burke D L, Field R C, Horton-Smith G, Spencer J E et al 1997 Phys. Rev. Lett. 79 1626 [8] Chen H, Wilks S C, Bonlie J D, Liang E P et al 2009 Phys. Rev. Lett. 102 105001 [9] Chen H, Wilks S C, Meyerhofer D D, Bonlie J et al 2010 Phys. Rev. Lett. 105 105003 [10] Xie B S, Mohamedsedik M and Dulat S 2012 Chin. Phys. Lett. 29 021102 [11] Li Z L, Sang H B and Xie B S 2013 Chin. Phys. Lett. 30 071201 [12] Sang H B, Jiang M and Xie B S 2013 Chin. Phys. Lett. 30 111201 [13] Blaschke D B, Prozorkevich A V, Roberts C D, Schmidt S M and Smolyansky S A 2006 Phys. Rev. Lett. 96 140402 [14] Jiang M, Su W, Lu X, Sheng Z M, Li Y T, Li Y J, Zhang J, Grobe R and Su Q 2011 Phys. Rev. A 83 053402 [15] Ridgers C P, Brady C S, Duclous R et al 2012 Phys. Rev. Lett. 108 165006 [16] Tang S, Xie B S, Lu D, Wang H Y, Fu L B and Liu J 2013 Phys. Rev. A 88 012106 [17] Krekora P, Grobe R and Su Q 2004 Phys. Rev. Lett. 92 040406 [18] Krekora P, Su Q and Grobe R 2005 J. Mod. Opt. 52 489 [19] Braun J W, Su Q and Grobe R 1999 Phys. Rev. A 59 604 [20] Schweber S S 1962 An Introduction to Relativistic Quantum Field Theory (New York: Harper & Row) [21] Krekora P, Cooley K, Su Q and Grobe R 2005 Laser Phys. 15 282 [22] Greiner W 2000 Relativistic Quantum Mechanics: Wave Equations 3rd edn (Berlin Heidelberg: Springer-Verlag) [23] Su W, Jiang M, Lv Z Q, Li Y J, Sheng Z M, Grobe R and Su Q 2012 Phys. Rev. A 86 013422 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|