Chin. Phys. Lett.  2014, Vol. 31 Issue (1): 011203    DOI: 10.1088/0256-307X/31/1/011203
THE PHYSICS OF ELEMENTARY PARTICLES AND FIELDS |
Enhanced Correlation of Electron-Positron Pair in Two and Three Dimensions
TANG Suo1, XIE Bai-Song1**, WANG Hong-Yu2, LIU Jie3, FU Li-Bin3, YU Ming-Young4,5
1Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875
2Department of Physics, Anshan Normal University, Anshan 114005
3Institute of Applied Physics and Computational Mathematics, P. O. Box 8009, Beijing 100088
4Institute for Fusion Theory and Simulation, Department of Physics, Zhejiang University, Hangzhou 310027
5Institut für Theoretische Physik I, Ruhr-Universi?t Bochum, D-44780 Bochum, Germany
Cite this article:   
TANG Suo, XIE Bai-Song, WANG Hong-Yu et al  2014 Chin. Phys. Lett. 31 011203
Download: PDF(919KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Early time electron-positron correlation in vacuum pair-production in an external field is investigated. The entangled electron and positron wave functions are obtained analytically in the configuration and momentum spaces. It is shown that, relative to that of the one-dimensional theory, two- and three-dimensional calculations yield enhanced spatial correlation and broadened momentum spectra. In fact, at early times the electron and positron almost coincide spatially. The correlation also depends on the direction of the applied field. For the spatial correlation, the transverse correlation is stronger than the longitudinal correlation.
Received: 15 October 2013      Published: 28 January 2014
PACS:  12.20.-m (Quantum electrodynamics)  
  03.65.Ud (Entanglement and quantum nonlocality)  
  42.50.-p (Quantum optics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/1/011203       OR      https://cpl.iphy.ac.cn/Y2014/V31/I1/011203
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
TANG Suo
XIE Bai-Song
WANG Hong-Yu
LIU Jie
FU Li-Bin
YU Ming-Young
[1] Greiner W, Müller B and Rafelski J 1985 Quantum Electrodynamics of Strong Field (Berlin Heidelberg: Springer-Verlag)
[2] Sauter F 1931 Z. Phys. 69 742
[3] Schwinger J 1951 Phys. Rev. 82 664
[4] Kluger Y, Eisenberg J M, Svetitsky B, Cooper F and Mottola E 1991 Phys. Rev. Lett. 67 2427
[5] Alkofer R, Hecht M B, Roberts C D, Schmidt S M and Vinnik D V 2001 Phys. Rev. Lett. 87 193902
[6] Krekora P, Su Q and Grobe R 2004 Phys. Rev. Lett. 93 043004
[7] Burke D L, Field R C, Horton-Smith G, Spencer J E et al 1997 Phys. Rev. Lett. 79 1626
[8] Chen H, Wilks S C, Bonlie J D, Liang E P et al 2009 Phys. Rev. Lett. 102 105001
[9] Chen H, Wilks S C, Meyerhofer D D, Bonlie J et al 2010 Phys. Rev. Lett. 105 105003
[10] Xie B S, Mohamedsedik M and Dulat S 2012 Chin. Phys. Lett. 29 021102
[11] Li Z L, Sang H B and Xie B S 2013 Chin. Phys. Lett. 30 071201
[12] Sang H B, Jiang M and Xie B S 2013 Chin. Phys. Lett. 30 111201
[13] Blaschke D B, Prozorkevich A V, Roberts C D, Schmidt S M and Smolyansky S A 2006 Phys. Rev. Lett. 96 140402
[14] Jiang M, Su W, Lu X, Sheng Z M, Li Y T, Li Y J, Zhang J, Grobe R and Su Q 2011 Phys. Rev. A 83 053402
[15] Ridgers C P, Brady C S, Duclous R et al 2012 Phys. Rev. Lett. 108 165006
[16] Tang S, Xie B S, Lu D, Wang H Y, Fu L B and Liu J 2013 Phys. Rev. A 88 012106
[17] Krekora P, Grobe R and Su Q 2004 Phys. Rev. Lett. 92 040406
[18] Krekora P, Su Q and Grobe R 2005 J. Mod. Opt. 52 489
[19] Braun J W, Su Q and Grobe R 1999 Phys. Rev. A 59 604
[20] Schweber S S 1962 An Introduction to Relativistic Quantum Field Theory (New York: Harper & Row)
[21] Krekora P, Cooley K, Su Q and Grobe R 2005 Laser Phys. 15 282
[22] Greiner W 2000 Relativistic Quantum Mechanics: Wave Equations 3rd edn (Berlin Heidelberg: Springer-Verlag)
[23] Su W, Jiang M, Lv Z Q, Li Y J, Sheng Z M, Grobe R and Su Q 2012 Phys. Rev. A 86 013422
Related articles from Frontiers Journals
[1] BAO Ai-Dong, SUN Yi-Qian, WANG Dan. An Anomaly Associated with Ward–Takahashi Identity for Pseudo-Tensor Current in QED[J]. Chin. Phys. Lett., 2012, 29(12): 011203
[2] REN Na, WANG Jia-Xiang, LI An-Kang, WANG Ping-Xiao. Pair Production in an Intense Laser Pulse: The Effect of Pulse Length[J]. Chin. Phys. Lett., 2012, 29(7): 011203
[3] XIE Bai-Song, Mohamedsedik Melike, Dulat Sayipjamal. Electron-Positron Pair Production in an Elliptic Polarized Time Varying Field[J]. Chin. Phys. Lett., 2012, 29(2): 011203
[4] ZENG Ran**, YANG Ya-Ping, . Repulsive and Restoring Casimir Forces Based on Magneto-Optical Effect[J]. Chin. Phys. Lett., 2011, 28(5): 011203
[5] XIONG Ai-Min, CHEN Xiao-Song. Casimir Force of Piston Systems with Arbitrary Cross Sections under Different Boundary Conditions[J]. Chin. Phys. Lett., 2009, 26(6): 011203
[6] S. H. Kim. Electric-Wiggler-Enhanced Three-Quantum Scattering and the Output Power Affected by this Scattering in a Free-Electron Laser[J]. Chin. Phys. Lett., 2009, 26(1): 011203
[7] LIANG Wen-Feng, WU Ming, LIU Hui, CHEN Xiang-Song. Gauge-Invariant Spin and Orbital Angular Momentum of Laguerre--Gaussian Laser[J]. Chin. Phys. Lett., 2008, 25(12): 011203
[8] ZHANG Ying, WANG Qing. Gauge Covariant Fermion Propagator in the Presence of Arbitrary External Gauge Field and Its Schwinger--Dyson Equation[J]. Chin. Phys. Lett., 2008, 25(4): 011203
[9] WANG Jing, ZHANG Xiang-Dong, PEI Shou-Yong, LIU Da-He. Temperature Tuning of Casimir Effect[J]. Chin. Phys. Lett., 2006, 23(9): 011203
[10] SHENG Zheng-Mao, FU Yong-Ming, YU Hai-Bo. Noncommutative QED Threshold Energy versus Optimum Collision Energy[J]. Chin. Phys. Lett., 2005, 22(3): 011203
[11] AO Shu-Yan, CHENG Tai-Wang, LI Xiao-Feng, WU Ling-An, FU Pan-Ming. Energy Quantization and Probability Density of Electron in Intense-Field-Atom Interactions[J]. Chin. Phys. Lett., 2003, 20(9): 011203
[12] CHENG Tai-Wang, LI Xiao-Feng, AO Shu-Yan, FU Pan-Ming. Interpretation of Plateau in High-Harmonic Generation [J]. Chin. Phys. Lett., 2003, 20(9): 011203
[13] AO Shu-Yan, CHENG Tai-Wang, LI Xiao-Feng, PAN Shou-Fu, FU Pan-Ming. Quantum Electrodynamics Theory of Laser Assisted Recombination[J]. Chin. Phys. Lett., 2003, 20(4): 011203
[14] DING Jian-Wen, YAN Xiao-Hong, CAO Jue-Xian, WANG Deng-Long,. Quantum Dynamics of One-Dimensional Nanocrystalline Solids[J]. Chin. Phys. Lett., 2002, 19(10): 011203
[15] WANG Zhengzhi. e+e- → JETS FOR MULTIPLICITY DISTRIBUTION[J]. Chin. Phys. Lett., 1990, 7(3): 011203
Viewed
Full text


Abstract