Chin. Phys. Lett.  2014, Vol. 31 Issue (1): 010502    DOI: 10.1088/0256-307X/31/1/010502
GENERAL |
State Transition Induced by Self-Steepening and Self Phase-Modulation
HE Jing-Song1,2, XU Shu-Wei3, M. S. Ruderman4, R. Erdélyi4
1Department of Mathematics, Ningbo University, Ningbo 315211
2DAMTP, University of Cambridge, Cambridge CB3 0WA, UK
3School of Mathematics, University of Science and Technology of China, Hefei 230026
4Solar Physics and Space Plasma Research Centre, University of Sheffield, Sheffield, S3 7RH, UK
Cite this article:   
HE Jing-Song, XU Shu-Wei, M. S. Ruderman et al  2014 Chin. Phys. Lett. 31 010502
Download: PDF(741KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We present a rational solution for a mixed nonlinear Schr?dinger (MNLS) equation. This solution has two free parameters, a and b, representing the contributions of self-steepening and self phase-modulation (SPM) of an associated physical system, respectively. It describes five soliton states: a paired bright-bright soliton, a single soliton, a paired bright-grey soliton, a paired bright-black soliton, and a rogue wave state. We show that the transition among these five states is induced by self-steepening and SPM through tuning the values of a and b. This is a unique and potentially fundamentally important phenomenon in a physical system described by the MNLS equation.
Received: 16 August 2013      Published: 28 January 2014
PACS:  05.45.Yv (Solitons)  
  42.65.Re (Ultrafast processes; optical pulse generation and pulse compression)  
  52.35.Sb (Solitons; BGK modes)  
  02.30.Ik (Integrable systems)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/1/010502       OR      https://cpl.iphy.ac.cn/Y2014/V31/I1/010502
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
HE Jing-Song
XU Shu-Wei
M. S. Ruderman
R. Erdélyi
[1] Mio K et al 1976 J. Phys. Soc. Jpn. 41 265
[2] Medvedev M V et al 1997 Phys. Rev. Lett. 78 4934
[3] Laveder D et al 2013 Phys. Lett. A 377 1535
[4] Tzoar N and Jain M 1981 Phys. Rev. A 23 1266
[5] Anderson D and Lisak M 1983 Phys. Rev. A 27 1393
[6] Zabolotskii A A 1987 Phys. Lett. A 124 500
[7] Wadati M et al 1979 J. Phys. Soc. Jpn. 46 1965
[8] Kundu A 1984 J. Math. Phys. 25 3433
[9] Porsezian K et al 2000 Chaos Solitons Fractals 11 2223
[10] Ding Q and Zhu Z N 2002 Phys. Lett. A 295 192
[11] Kundu A 2006 Symmetry, Integrability and Geometry: Methods and Applications 2 078
[12] Kawata T et al 1980 J. Phys. Soc. Jpn. 48 1371
[13] Chowdhury A R et al 1985 Phys. Rev. D 32 3233
[14] Mihalache D et al 1993 Phys. Rev. A 47 3190
[15] Doktorov E V 2002 Eur. Phys. J. B 29 227
[16] Rangwala A A and Rao J A 1990 J. Math. Phys. 31 1126
[17] Wrigh O C 2004 Chaos Solitons Fractals 20 735
[18] Xia T C et al 2005 Chaos Solitons Fractals 26 889
[19] Zhang H Q et al 2012 Phys. Scr. 85 015007
[20] Liu S L and Wang W Z 1993 Phys. Rev. E 48 3054
[21] Li M et al 2010 Phys. Rev. E 81 046606
[22] Golovchenko E A et al 1985 JETP Lett. 42 87
[23] Chen X J and Yan J K 2002 Phys. Rev. E 65 066608
[24] Shchesnovich V S and Doktorov E V 1999 Physica D 129 115
[25] Lashkin V M 2004 Phys. Rev. E 69 016611
[26] He J S et al 2013 Phys. Rev. E 87 052914
[27] Xu S W et al 2011 J. Phys. A: Math. Theor. 44 305203
[28] Xu S W and He J S 2012 J. Math. Phys. 53 063507
[29] Tao Y S and He J S 2012 Phys. Rev. E 85 026601
[30] He J S et al 2012 Phys. Rev. E 86 066603
[31] Ablowitz M J 2011 Nonlinear Dispersive Waves: Asymptotic Analysis and Solitons (Cambridge: Cambridge University Press) p 153
[32] Alfvén H 1942 Nature 150 405
[33] Jess D B et al2009 Science 323 1582
[34] Parnell C E and De Moortel I 2012 Phil. Trans. R. Soc. A 370 3217
[35] M Mathioudakis et al 2013 Space Sci. Rev. 175 1
[36] Wedemeyer-B?hm S et al 2012 Nature 486 505
[37] Morton R et al 2012 Nat. Commun. 3 1315
[38] Nakamura A 1981 J. Phys. Soc. Jpn. 50 2469
Nakamura A 1982 J. Phys. Soc. Jpn. 51 19
[39] Sasa N and Satsuma J 1991 J. Phys. Soc. Jpn. 60 409
[40] Li Y S and Han W T 2001 Chin. Ann. Math. B 22 171
[41] Li Z H et al 2000 Phys. Rev. Lett. 84 4096
[42] Kevrekidis P G et al 2003 New J. Phys. 5 64
[43] Choudhuri A and Porsezian K 2012 Opt. Commun. 285 364
[44] Peregrine D H 1983 J. Aust. Math. Soc. Ser. B: Appl. Math. 25 16
[45] He J S et al 2012 J. Phys. Soc. Jpn. 81 033002
[46] Bandelow U and Akhmediev N 2012 Phys. Rev. E 86 026606
[47] Serkin V N et al 2007 Phys. Rev. Lett. 98 074102
[48] Belmonte-Beitia J et al 2007 Phys. Rev. Lett. 98 064102
[49] Belmonte-Beitia J et al 2008 Phys. Rev. Lett. 100 164102
[50] He J S and Li Y S 2011 Stud. Appl. Math. 126 1
[51] Lenells J 2008 Physica D 237 3008
[52] Guo B L et al 2013 Stud. Appl. Math. 130 317
[53] Zhang Y S et al 2013 Commun. Nonlinear Sci. Numer. Simulat. (in press) (also see: arXiv:1304.2579v1)
Related articles from Frontiers Journals
[1] S. Y. Lou, Man Jia, and Xia-Zhi Hao. Higher Dimensional Camassa–Holm Equations[J]. Chin. Phys. Lett., 2023, 40(2): 010502
[2] Shubin Wang, Guoli Ma, Xin Zhang, and Daiyin Zhu. Dynamic Behavior of Optical Soliton Interactions in Optical Communication Systems[J]. Chin. Phys. Lett., 2022, 39(11): 010502
[3] Wen-Xiu Ma. Matrix Integrable Fourth-Order Nonlinear Schr?dinger Equations and Their Exact Soliton Solutions[J]. Chin. Phys. Lett., 2022, 39(10): 010502
[4] Chong Liu, Shao-Chun Chen, Xiankun Yao, and Nail Akhmediev. Modulation Instability and Non-Degenerate Akhmediev Breathers of Manakov Equations[J]. Chin. Phys. Lett., 2022, 39(9): 010502
[5] Qin Zhou, Yu Zhong, Houria Triki, Yunzhou Sun, Siliu Xu, Wenjun Liu, and Anjan Biswas. Chirped Bright and Kink Solitons in Nonlinear Optical Fibers with Weak Nonlocality and Cubic-Quantic-Septic Nonlinearity[J]. Chin. Phys. Lett., 2022, 39(4): 010502
[6] Yuan Zhao, Yun-Bin Lei, Yu-Xi Xu, Si-Liu Xu, Houria Triki, Anjan Biswas, and Qin Zhou. Vector Spatiotemporal Solitons and Their Memory Features in Cold Rydberg Gases[J]. Chin. Phys. Lett., 2022, 39(3): 010502
[7] Yiling Zhang, Chunyu Jia, and Zhaoxin Liang. Dynamics of Two Dark Solitons in a Polariton Condensate[J]. Chin. Phys. Lett., 2022, 39(2): 010502
[8] Qin Zhou. Influence of Parameters of Optical Fibers on Optical Soliton Interactions[J]. Chin. Phys. Lett., 2022, 39(1): 010502
[9] Xiao-Man Zhang, Yan-Hong Qin, Li-Ming Ling, and Li-Chen Zhao. Inelastic Interaction of Double-Valley Dark Solitons for the Hirota Equation[J]. Chin. Phys. Lett., 2021, 38(9): 010502
[10] Qi-Hao Cao  and Chao-Qing Dai. Symmetric and Anti-Symmetric Solitons of the Fractional Second- and Third-Order Nonlinear Schr?dinger Equation[J]. Chin. Phys. Lett., 2021, 38(9): 010502
[11] Yuan-Yuan Yan  and Wen-Jun Liu. Soliton Rectangular Pulses and Bound States in a Dissipative System Modeled by the Variable-Coefficients Complex Cubic-Quintic Ginzburg–Landau Equation[J]. Chin. Phys. Lett., 2021, 38(9): 010502
[12] Kai-Hua Yin, Xue-Ping Cheng, and Ji Lin. Soliton Molecule and Breather-Soliton Molecule Structures for a General Sixth-Order Nonlinear Equation[J]. Chin. Phys. Lett., 2021, 38(8): 010502
[13] Zequn Qi , Zhao Zhang , and Biao Li. Space-Curved Resonant Line Solitons in a Generalized $(2+1)$-Dimensional Fifth-Order KdV System[J]. Chin. Phys. Lett., 2021, 38(6): 010502
[14] Wei Wang, Ruoxia Yao, and Senyue Lou. Abundant Traveling Wave Structures of (1+1)-Dimensional Sawada–Kotera Equation: Few Cycle Solitons and Soliton Molecules[J]. Chin. Phys. Lett., 2020, 37(10): 010502
[15] Li-Chen Zhao, Yan-Hong Qin, Wen-Long Wang, Zhan-Ying Yang. A Direct Derivation of the Dark Soliton Excitation Energy[J]. Chin. Phys. Lett., 2020, 37(5): 010502
Viewed
Full text


Abstract