CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Transport Behavior in Spinel Oxide MgTi2O4 |
ZHU Yuan-Yuan, WANG Rong-Juan, WANG Li, LIU Yong**, XIONG Rui**, SHI Jing, AN Li-Heng, SUN Duo-Hua |
Key Laboratory of Artificial Micro- and Nanostructures (Ministry of Education) and School of Physics and Technology, Wuhan University, Wuhan 430072
|
|
Cite this article: |
ZHU Yuan-Yuan, WANG Rong-Juan, WANG Li et al 2014 Chin. Phys. Lett. 31 097201 |
|
|
Abstract Spinel oxide MgTi2O4 is synthesized by the spark plasma sintering method. The temperature dependences of magnetic susceptibility and resistance are measured and investigated in detail. It is shown that the transition of MgTi2O4 occurs at the phase transition temperature Tt~258 K. The fits of resistance versus temperature curve demonstrate that MgTi2O4 displays metal behavior above Tt, while a dual conducting mechanism, the Mott-insulator-like variable range hopping and normal activated conduction, is suggested to be responsible for the transport behavior of MgTi2O4 below Tt.
|
|
Published: 22 August 2014
|
|
PACS: |
72.80.Ga
|
(Transition-metal compounds)
|
|
73.61.Ga
|
(II-VI semiconductors)
|
|
72.20.Dp
|
(General theory, scattering mechanisms)
|
|
|
|
|
[1] Johnston D C, Prakash H, Zachariasen W H and Viswanathan R 1973 Mater. Res. Bull. 8 777 [2] Geng H X, Dong A F and Che G C 2005 J. Phys. C 432 53 [3] Kondo S, Johnston D C, Swenson C A, Borsa F, Mahajan A V, Miller L L, Gu T, Goldman A I, Maple M B, Gajewski D A, Freeman E J, Dilley N R, Dickey R P, Merrin J, Kojima K, Luke G M, Uemura Y J, Chmaissem O and Jorgensen J D 1997 Phys. Rev. Lett. 78 3729 [4] Fujiwara N, Yasuoka H and Ueda Y 1998 Phys. Rev. B 57 3539 [5] Urano C, Nohara M, Kondo S, Sakai F, Takagi H, Shiraki T and Okubo T 2000 Phys. Rev. Lett. 85 1052 [6] Ueda Y, Fujiwara N and Yasuoka H 1997 J. Phys. Soc. Jpn. 66 778 [7] Reehuis M, Krimmel A, Büttgen N, Loidl A and Prokofiev A 2003 Eur. Phys. J. B 35 311 [8] Lee S H, Louca D, Ueda H, Park S, Sato T J, Isobe M, Ueda Y, Rosenkranz S, Zschack P, í?iguez J, Qiu Y and Osborn R 2004 Phys. Rev. Lett. 93 156407 [9] Lee S H, Broholm C, Kim T H, Ratcliff W and Cheong S W 2000 Phys. Rev. Lett. 84 3718 [10] Radaelli P G, Horibe Y, Gutmann M J, Ishibashi H, Chen C H, Ibberson R M, Koyama Y, Hor Y S, Kiryukhin V and Cheong S W 2002 Nature 416 155 [11] Schmidt M, Ratcliff W, Radaelli P G, Refson K, Harrison N M and Cheong S W 2004 Phys. Rev. Lett. 92 056402 [12] Zhou H D and Goodenough J B 2005 Phys. Rev. B 72 045118 [13] Isobe M and Ueda Y 2002 J. Phys. Soc. Jpn. 71 1848 [14] Zhou J, Li G, Luo J L, Ma Y C, Wu D, Zhu B P, Tang Z, Shi J and Wang N L 2006 Phys. Rev. B 74 245102 [15] Popovic Z V, Marzi G D, Konstantinovic M J, Cantarero A, Mitrovic Z D, Isobe M and Ueda Y 2003 Phys. Rev. B 68 224302 [16] Hoh H, Kloc C and Bucher E 1996 J. Solid State Chem. 125 216 [17] Zhu B P, Tang Z, Zhao L H, Wang L L, Li C Z, Yin D, Yu Z X, Tang W F, Xiong R, Shi J and Ruan X F 2007 Mater. Lett. 61 578 [18] Sugiamoto W, Kaneko N, Sugahara Y and Kuroda K 1997 J. Ceram. Soc. Jpn. 105 101 [19] Isobe M and Ueda Y 2004 J. Alloys Compd. 383 85 [20] Catalan G, Bowman R M and Gregg J M 2000 Phys. Rev. B 62 7892 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|