Chin. Phys. Lett.  2014, Vol. 31 Issue (09): 094204    DOI: 10.1088/0256-307X/31/9/094204
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
A Femtosecond-Laser-Induced Fiber Bragg Grating with Supermode Resonances for Sensing Applications
LIU Ning-Liang1**, LIU Shu-Hui2, LU Pei-Xiang2
1College of Science, Huazhong Agricultural University, Wuhan 430070
2School of Physics, Huazhong University of Science and Technology, Wuhan 430074
Cite this article:   
LIU Ning-Liang, LIU Shu-Hui, LU Pei-Xiang 2014 Chin. Phys. Lett. 31 094204
Download: PDF(667KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A Bragg grating is inscribed into the cladding of an all-solid photonic bandgap fiber by use of side femtosecond illumination. Multimode resonances are observed, with calculations resulting from guided supermodes in the cladding by the phase matching condition. All supermode resonances show nearly the same sensitivity to strain and temperature, about 0.98 pm/μϵ and 12.78 pm/°C, respectively, while their resonant wavelengths are insensitive to bend. An annealing test shows that this grating can endure temperatures higher than 1100°C where it can still keep high reflectivity and good repeatability. Such a Bragg grating could have potential applications in fiber sensors for strain and temperature measurements, with low cross-sensitivity to bend or an external refractive index, especially in harsh environments.
Published: 22 August 2014
PACS:  42.79.Dj (Gratings)  
  42.81.Cn (Fiber testing and measurement of fiber parameters)  
  42.81.Pa (Sensors, gyros)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/9/094204       OR      https://cpl.iphy.ac.cn/Y2014/V31/I09/094204
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIU Ning-Liang
LIU Shu-Hui
LU Pei-Xiang
[1] Liao C R and Wang D N 2013 Photon. Sensors 3 97
[2] Li Y H, Liao C R, Wang D N, Sun T and Grattan K V 2008 Opt. Express 16 21239
[3] Li Y F, Hu X K and Wang A M 2010 Acta Phys. Sin. 60 064212 (in Chinese)
[4] Yan G F, Zhang A P, Ma G Y, Wang B H, Kim B, Im J, He S L and Chung Y 2011 IEEE Photon. Technol. Lett. 23 1588
[5] Liao C R, Wang Y, Wang D N and Jin L 2010 IEEE Photon. Technol. Lett. 22 425
[6] Jin L, Wang Z, Liu Y G, Kai G Y and Dong X Y 2008 Opt. Express 16 21119
[7] Jin L, Wang Z, Fang Q, Liu Y G, Liu B and Dong X Y 2007 Opt. Express 15 15555
[8] Li Y H, Wang D N and Jin L 2009 Opt. Lett. 34 1264
[9] Zhang J H, Liu N L, Wang Y, Ji L L and Lu P X 2012 Chin. Phys. Lett. 29 074205
[10] Miao Y P, Liu B, Zhang K L, Zhu X Y, Liu Y, Chen X Y and Zhang H 2011 Proc. SPIE 8351 835116
[11] Bigot L, Bouwmans G, Quiquempois Y and Douay M 2009 Opt. Express 17 10105
[12] Mihailov S J 2012 Sensors 12 1898
[13] Jin J, Lin S and Song N F 2012 Chin. Phys. B 21 064221
Related articles from Frontiers Journals
[1] Yanyan Cao, Bocheng Yu, Yangyang Fu, Lei Gao, and Yadong Xu. Phase-Gradient Metasurfaces Based on Local Fabry–Pérot Resonances[J]. Chin. Phys. Lett., 2020, 37(9): 094204
[2] Chen Huang , Qian-Ju Song , Peng Hu , Shi-Wei Dai , Hong Xiang, Dezhuan Han. Bound States in the Continuum in One-Dimensional Dimerized Plasmonic Gratings *[J]. Chin. Phys. Lett., 0, (): 094204
[3] Chen Huang , Qian-Ju Song , Peng Hu , Shi-Wei Dai , Hong Xiang, Dezhuan Han. Bound States in the Continuum in One-Dimensional Dimerized Plasmonic Gratings[J]. Chin. Phys. Lett., 2020, 37(6): 094204
[4] Xia-Zhi Li, Hong-Bin Zhuo, De-Bin Zou, Shi-Jie Zhang, Hong-Yu Zhou, Na Zhao, Yue Lang, De-Yao Yu. High-Order-Harmonic Generation from a Relativistic Circularly Polarized Laser Interacting with Over-Dense Plasma Grating[J]. Chin. Phys. Lett., 2017, 34(9): 094204
[5] Chen Li, Tian-Wei Zhou, Jing-Gang Xiang, Yue-Yang Zhai, Xu-Guang Yue, Shi-Feng Yang, Wei Xiong, Xu-Zong Chen. Two-Dimensional Talbot Effect with Atomic Density Gratings[J]. Chin. Phys. Lett., 2017, 34(8): 094204
[6] Jin Kang, Bao-Le Lu, Xin-Yuan Qi, Xiao-Qiang Feng, Hao-Wei Chen, Man Jiang, Yang Wang, Pan Fu, Jin-Tao Bai. An Efficient Single-Frequency Yb-Doped All-Fiber MOPA Laser at 1064.3nm[J]. Chin. Phys. Lett., 2016, 33(12): 094204
[7] Xiao-Qiang Zhang, Rui-Shan Chen, Yong Zhou, Hai Ming, An-Ting Wang. Convention of Optical Vortices in Two-Helix Long-Period Fiber Gratings[J]. Chin. Phys. Lett., 2016, 33(08): 094204
[8] Yong Liu, Chen Wang, Anastasia Nemkova, Shi-Ming Hu, Zhi-Yong Li, Yu-De Yu. Structured Illumination Chip Based on Integrated Optics[J]. Chin. Phys. Lett., 2016, 33(05): 094204
[9] SONG Yu-Zhi, ZHANG Yu, SONG Jia-Kun, LI Kang-Wen, ZHANG Zu-Yin, XU Yun, SONG Guo-Feng, CHEN Liang-Hui. Single Mode 2 μm GaSb Based Laterally Coupled Distributed Feedback Quantum-Well Laser Diodes with Metal Grating[J]. Chin. Phys. Lett., 2015, 32(07): 094204
[10] LU Bao-Le, HUANG Sheng-Hong, YIN Mo-Juan, CHEN Hao-Wei, REN Zhao-Yu, BAI Jin-Tao. Wavelength-Tunable Single Frequency Ytterbium-Doped Fiber Laser with Loop Mirror Filter[J]. Chin. Phys. Lett., 2015, 32(4): 094204
[11] ZHANG Ji-Cheng, LIU Yu-Wei, HUANG Cheng-Long, ZHANG Qiang-Qiang, YI Yong, ZENG Yong, ZHU Xiao-Li, FAN Quan-Ping, QIAN Feng, WEI Lai, WANG Hong-Bin, WU Wei-Dong, CAO Lei-Feng. Diffraction Properties for 1000 Line/mm Free-Standing Quantum-Dot-Array Diffraction Grating Fabricated by Focused Ion Beam[J]. Chin. Phys. Lett., 2014, 31(12): 094204
[12] YAO Bao-Yin, FENG Li-Shuang, WANG Xiao, LIU Wei-Fang, LIU Mei-Hua. Micrograting Displacement Sensor with Integrated Electrostatic Actuation[J]. Chin. Phys. Lett., 2014, 31(07): 094204
[13] ZHAO Jian-Yi, CHEN Xin, ZHOU Ning, HUANG Xiao-Dong, CAO Ming-De, LIU Wen. A 16-Channel Distributed-Feedback Laser Array with a Monolithic Integrated Arrayed Waveguide Grating Multiplexer for a Wavelength Division Multiplex-Passive Optical Network System Network[J]. Chin. Phys. Lett., 2014, 31(07): 094204
[14] HU Jin-Hua, HUANG Yong-Qing, REN Xiao-Min, DUAN Xiao-Feng, LI Ye-Hong, WANG Qi, ZHANG Xia, WANG Jun. Modeling of Fano Resonance in High-Contrast Resonant Grating Structures[J]. Chin. Phys. Lett., 2014, 31(06): 094204
[15] CHEN Xin, ZHAO Jian-Yi, ZHOU Ning, HUANG Xiao-Dong, LIU Wen. Four-Channel 1.55-μm DFB Laser Array Monolithically Integrated with a 4×1 Multimode-Interference Combiner Based on Nanoimprint Lithography[J]. Chin. Phys. Lett., 2014, 31(04): 094204
Viewed
Full text


Abstract