Chin. Phys. Lett.  2014, Vol. 31 Issue (08): 086401    DOI: 10.1088/0256-307X/31/8/086401
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Cavitation Simulation with Consideration of the Viscous Effect at Large Liquid Temperature Variation
YU An1, LUO Xian-Wu1,2**, JI Bin1, HUANG Ren-Fang1, HIDALGO Victor1, KIM Song Hak2
1State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing 100084
2Beijing Key Laboratory of CO2 Utilization and Reduction Technology, Tsinghua University, Beijing 100084
Cite this article:   
YU An, LUO Xian-Wu, JI Bin et al  2014 Chin. Phys. Lett. 31 086401
Download: PDF(674KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The phase change due to cavitation is not only driven by the pressure difference between the local pressure and vapor saturated pressure, but also affected by the physical property changes in the case of large liquid temperature variation. The present work simulates cavitation with consideration of the viscous effect as well as the local variation of vapor saturated pressure, density, etc. A new cavitation model is developed based on the bubble dynamics, and is applied to analyze the cavitating flow around an NACA0015 hydrofoil at different liquid temperatures from 25°C to 150°C. The results by the proposed model, such as the pressure distribution along the hydrofoil wall surface, vapor volume fraction, and source term of the mass transfer rate due to cavitation, are compared with the available experimental data and the numerical results by an existing thermodynamic model. It is noted that the numerical results by the proposed cavitation model have a slight discrepancy from the experimental results at room temperature, and the accuracy is better than the existing thermodynamic cavitation model. Thus the proposed cavitation model is acceptable for the simulation of cavitating flows at different liquid temperatures.
PACS:  64.70.fm (Thermodynamics studies of evaporation and condensation)  
  47.55.Ca (Gas/liquid flows)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/8/086401       OR      https://cpl.iphy.ac.cn/Y2014/V31/I08/086401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YU An
LUO Xian-Wu
JI Bin
HUANG Ren-Fang
HIDALGO Victor
KIM Song Hak
[1] Zhang Y and Li S 2014 Int. Commun. Heat Mass Transfer 53 43
[2] Zhang Y and Li S 2014 Int. J. Heat Mass Transfer 69 106
[3] Ji B, Luo X, Wu Y and Xu H 2012 Chin. Phys. Lett. 29 076401
[4] Luo X, Ji B, Zhang Y and Xu H 2012 Chin. Phys. Lett. 29 016401
[5] Ji B, Luo X, Wu Y, Peng X and Duan Y 2013 Int. J. Multiphase Flow 51 33
[6] Ji B, Luo X, Arndt R E A and Wu Y 2014 Ocean Eng. 87 64
[7] Ji B, Luo X, Peng X and Wu Y 2013 J. Hydrodyn 25 510
[8] Cervone A, Bramanti C, Rapposelli E and d'Agostino L 2006 J. Fluids Eng. 128 326
[9] Stahl H A and Stepanoff A J 1956 J. Basic. Eng. 78 1691
[10] Zhang X B, Qiu L M, Gao Y and Zhang X J 2008 Cryogenics 48 432
[11] Zhang X B, Wu Z, Xiang S J and Qiu L M 2013 Chin. Sci. Bull. 58 567
[12] Huang B and Wang G Y 2011 Chin. Phys. Lett. 28 026401
[13] Huang B, Wu Q and Wang G Y 2014 Int. J. Hydrogen Energ. 39 1698
[14] Zhang Y, Luo X, Ji B, Liu S, Wu Y and Xu H 2010 Chin. Phys. Lett. 27 016401
Related articles from Frontiers Journals
[1] Zhu Ma, Chengyin Han, Xunda Jiang, Ruihuan Fang, Yuxiang Qiu, Minhua Zhao, Jiahao Huang, Bo Lu, and Chaohong Lee. Production of $^{87}$Rb Bose–Einstein Condensate in an Asymmetric Crossed Optical Dipole Trap[J]. Chin. Phys. Lett., 2021, 38(10): 086401
[2] Rehman Fazal, Jia-Zhen Li, Zhi-Wen Chen, Yuan Qin, Ya-Yi Lin, Zuan-Xian Zhang, Shan-Chao Zhang, Wei Huang, Hui Yan, Shi-Liang Zhu. Production of $^{87}$Rb Bose–Einstein Condensate with a Simple Evaporative Cooling Method[J]. Chin. Phys. Lett., 2020, 37(3): 086401
[3] Tian-You Gao, Dong-Fang Zhang, Ling-Ran Kong, Rui-Zong Li, Kai-Jun Jiang. Observation of Atomic Dynamic Behaviors in the Evaporative Cooling by In-Situ Imaging the Plugged Hole of Ultracold Atoms[J]. Chin. Phys. Lett., 2018, 35(8): 086401
[4] Ting Chen, Yu-Ning Zhang, Xiao-Ze Du. Determination of the Minimum Wave Speed for the Modelling of Ventilated Cavitation[J]. Chin. Phys. Lett., 2016, 33(11): 086401
[5] Dong-Fang Zhang, Tian-You Gao, Ling-Ran Kong, Kai Li, Kai-Jun Jiang. Production of Rubidium Bose–Einstein Condensate in an Optically Plugged Magnetic Quadrupole Trap[J]. Chin. Phys. Lett., 2016, 33(07): 086401
[6] JI Bin, LUO Xian-Wu, WU Yu-Lin, XU Hong-Yuan. Unsteady Cavitating Flow around a Hydrofoil Simulated Using the Partially-Averaged Navier–Stokes Model[J]. Chin. Phys. Lett., 2012, 29(7): 086401
[7] TAN Lei, CAO Shu-Liang**, WANG Yu-Ming, ZHU Bao-Shan. Numerical Simulation of Cavitation in a Centrifugal Pump at Low Flow Rate[J]. Chin. Phys. Lett., 2012, 29(1): 086401
[8] LUO Xian-Wu**, JI Bin, ZHANG Yao, XU Hong-Yuan. Cavitating Flow over a Mini Hydrofoil[J]. Chin. Phys. Lett., 2012, 29(1): 086401
[9] HUANG Biao, WANG Guo-Yu** . Evaluation of a Filter-Based Model for Computations of Cavitating Flows[J]. Chin. Phys. Lett., 2011, 28(2): 086401
[10] JI Bin, LUO Xian-Wu, ZHANG Yao, RAN Hong-Juan, XU Hong-Yuan, WU Yu-Lin. A Three-Component Model Suitable for Natural and Ventilated Cavitation[J]. Chin. Phys. Lett., 2010, 27(9): 086401
[11] ZHANG Yao, LUO Xian-Wu, JI Bin, LIU Shu-Hong, WU Yu-Lin, XU Hong-Yuan. A Thermodynamic Cavitation Model for Cavitating Flow Simulation in a Wide Range of Water Temperatures[J]. Chin. Phys. Lett., 2010, 27(1): 086401
Viewed
Full text


Abstract