Chin. Phys. Lett.  2014, Vol. 31 Issue (08): 084301    DOI: 10.1088/0256-307X/31/8/084301
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
S0 Lamb Wave Scattering from a Cylindrical Inhomogeneity in a Transversely Isotropic Composite Plate
ZHANG Hai-Yan1**, YAO Jie-Cong1, WANG Rui1, MA Shi-Wei2
1School of Communication and Information Engineering, Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Shanghai University, Shanghai 200444
2Shanghai Key Laboratory of Power Station Automation Technology, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200072
Cite this article:   
ZHANG Hai-Yan, YAO Jie-Cong, WANG Rui et al  2014 Chin. Phys. Lett. 31 084301
Download: PDF(711KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract An analytical model using the Poisson theory is proposed to predict the S0 Lamb wave scattering from a cylindrical inhomogeneity in a transversely isotropic composite plate. Due to the anisotropic elastic properties of the plate, the suitability of the model is first examined by the dispersion curve of an S0 wave by using approximate Poisson theory compared to the exact Lamb solution. It is found that the Poisson theory can accurately describe the behavior of the S0 wave at low frequency when the incident S0 wave is parallel or perpendicular to the fiber direction of the transversely isotropic composite plate. On this basis, making use of the wave function expansion technique and coupling conditions at the inhomogeneity defect boundary, the far field scattered patterns of various inhomogeneity sizes and properties are then explored. The present results reveal that the scattering patterns are strongly dependent on the size and stiffness of the cylindrical inhomogeneity.
PACS:  43.20.+g (General linear acoustics)  
  43.35.+d (Ultrasonics, quantum acoustics, and physical effects of sound)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/8/084301       OR      https://cpl.iphy.ac.cn/Y2014/V31/I08/084301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Hai-Yan
YAO Jie-Cong
WANG Rui
MA Shi-Wei
[1] Ng C T et al 2009 Eng. Struct. 31 2842
[2] Zhang H Y et al 2014 Chin. Phys. Lett. 31 034301
[3] Zhang H Y and Yu J B 2011 Chin. Phys. B 20 094301
[4] Yu Y L et al 2013 Chin. Phys. Lett. 30 034301
[5] Ng C T et al 2012 J. Sound Vib. 331 4870
[6] McKeon J C P and Hinders M K 1999 J. Sound Vib. 224 843
[7] Grahn T 2003 Wave Motion 37 63
[8] Wang C H and Chang F K 2005 J. Sound Vib. 282 429
[9] Cegla F B et al 2008 Wave Motion 45 162
[10] Moreau L et al 2011 Wave Motion 48 586
[11] Moreau L et al 2012 Wave Motion 49 375
[12] Achenbach J D 1973 Wave Propagation in Elastic Solids (Amsterdam: North-Holland)
[13] Nayfeh A H and Chimenti D E 1989 J. Appl. Mech. 56 881
Related articles from Frontiers Journals
[1] Ze-Lin Kong, Zhi-Kang Lin, and Jian-Hua Jiang. Topological Wannier Cycles for the Bulk and Edges[J]. Chin. Phys. Lett., 2022, 39(8): 084301
[2] Zhi-Kang Lin, Shi-Qiao Wu, Hai-Xiao Wang, and Jian-Hua Jiang. Higher-Order Topological Spin Hall Effect of Sound[J]. Chin. Phys. Lett., 2020, 37(7): 084301
[3] Jian Li, Hong-Juan Yang, Jun Ma, Xiang Gao, Jun-Hong Li, Jian-Zheng Cheng, Wen Wang, Cheng-Hao Wang. Detection and Location of a Target in Layered Media without Prior Knowledge of Medium Parameters[J]. Chin. Phys. Lett., 2020, 37(6): 084301
[4] Jian Li, Hong-Juan Yang, Jun Ma, Xiang Gao, Jun-Hong Li, Jian-Zheng Cheng, Wen Wang, Cheng-Hao Wang. Detection and Location of a Target in Layered Media without Prior Knowledge of Medium Parameters *[J]. Chin. Phys. Lett., 0, (): 084301
[5] Shu-Huan Xie, Xinsheng Fang, Peng-Qi Li, Sibo Huang, Yu-Gui Peng, Ya-Xi Shen, Yong Li, Xue-Feng Zhu. Tunable Double-Band Perfect Absorbers via Acoustic Metasurfaces with Nesting Helical Tracks[J]. Chin. Phys. Lett., 2020, 37(5): 084301
[6] Hong-Juan Yang, Jian Li, Xiang Gao, Jun Ma, Jun-Hong Li, Wen Wang, Cheng-Hao Wang. Detection and Location of a Target in Layered Media by Snapshot Time Reversal and Reverse Time Migration Mixed Method[J]. Chin. Phys. Lett., 2019, 36(11): 084301
[7] Han Zhang, Yang Gao. Acoustic Vortex Beam Generation by a Piezoelectric Transducer Using Spiral Electrodes[J]. Chin. Phys. Lett., 2019, 36(11): 084301
[8] Hang Yang, Xin Zhang, Jian-hua Guo, Fu-gen Wu, Yuan-wei Yao. Influence of Coating Layer on Acoustic Wave Propagation in a Random Complex Medium with Resonant Scatterers[J]. Chin. Phys. Lett., 2019, 36(8): 084301
[9] Cun Wang, Shan-De Li, Wei-Guang Zheng, Qi-Bai Huang. Acoustic Absorption Characteristics of New Underwater Omnidirectional Absorber[J]. Chin. Phys. Lett., 2019, 36(4): 084301
[10] Zhi-Miao Lu, Li Cai, Ji-Hong Wen, Xing Chen. Physically Realizable Broadband Acoustic Metamaterials with Anisotropic Density[J]. Chin. Phys. Lett., 2019, 36(2): 084301
[11] H. Barati, Z. Basiri, A. Abdolali. Acoustic Multi Emission Lens via Transformation Acoustics[J]. Chin. Phys. Lett., 2018, 35(10): 084301
[12] Jie Hu, Bin Liang, Xiao-Jun Qiu. Transparent and Ultra-lightweight Design for Ultra-Broadband Asymmetric Transmission of Airborne Sound[J]. Chin. Phys. Lett., 2018, 35(2): 084301
[13] Zheng Xu, Meng-Lu Qian, Qian Cheng, Xiao-Jun Liu. Manipulating Backward Propagation of Acoustic Waves by a Periodical Structure[J]. Chin. Phys. Lett., 2016, 33(11): 084301
[14] Si-Yuan Yu, Xu Ni, Ye-Long Xu, Cheng He, Priyanka Nayar, Ming-Hui Lu, Yan-Feng Chen. Extraordinary Acoustic Transmission in a Helmholtz Resonance Cavity-Constructed Acoustic Grating[J]. Chin. Phys. Lett., 2016, 33(04): 084301
[15] Wen-Fa Zhu, Hai-Yan Zhang, Jian Xu, Xiao-Dong Chai. Three-Dimensional Scattering of an Incident Plane Shear Horizontal Guided Wave by a Partly through-Thickness Hole in a Plate[J]. Chin. Phys. Lett., 2016, 33(01): 084301
Viewed
Full text


Abstract