CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
Transport Properties and the Entropy-Scaling Law for Liquid Tantalum and Molybdenum under High Pressure |
CAO Qi-Long**, HUANG Duo-Hui, YANG Jun-Sheng, WAN Ming-Jie, WANG Fan-Hou |
Key Laboratory of Computational Physics, Yibin University, Yibin 644007
|
|
Cite this article: |
CAO Qi-Long, HUANG Duo-Hui, YANG Jun-Sheng et al 2014 Chin. Phys. Lett. 31 066202 |
|
|
Abstract Molecular dynamics simulations are applied to study the transport properties, including the self-diffusion coefficient and viscosity, of liquid tantalum and molybdenum under high pressure conditions. The temperature dependence of self-diffusion coefficient, viscosity and the pair correlation entropy under high pressure conditions are investigated. Our results show that the Arrhenius law well describes the temperature dependence of self-diffusion coefficients and viscosity under high pressure, and the diffusion activation energy decreases with increasing pressure, while the viscosity activation energy increases with increasing pressure. The temperature dependence of the pair correlation entropy is well described by 1/T scaling. Furthermore, we find that the entropy-scaling laws, proposed by Rosenfeld for self-diffusion coefficients and viscosity in simple liquids under ambient pressure, still hold well for liquid tantalum and molybdenum under high pressure conditions.
|
|
Published: 26 May 2014
|
|
PACS: |
62.50.-p
|
(High-pressure effects in solids and liquids)
|
|
65.40.gd
|
(Entropy)
|
|
66.20.-d
|
(Viscosity of liquids; diffusive momentum transport)
|
|
|
|
|
[1] Paradis P F, Ishikawa T and Yoda S 2005 J. Appl. Phys. 97 053506 [2] Paradis P F, Ishikawa T and Koike N 2007 Int. J. Refract. Met. Hard Mater. 25 95 [3] Ishikawa T, Paradis P F, Okada J T, Kumar M V and Watanabe Y 2013 J. Chem. ThermoDyn. 65 1 [4] Rosenfeld Y 1977 Phys. Rev. A 15 2545 [5] Rosenfeld Y 1999 J. Phys.: Condens. Matter 11 5415 [6] Li G X, Liu C S and Zhu Z G 2005 Phys. Rev. B 71 094209 [7] Korkmaz Ş Yazar U U N and Korkmaz S D 2006 Fluid Phase Equilib. 249 159 [8] Korkmaz S D and Korkmaz Ş 2007 Model. Simul. Mater. Sci. Eng. 15 285 [9] Korkmaz S D and Korkmaz Ş 2009 J. Mol. Liq. 150 81 [10] Cao Q L, Kong X S, Li Y D, Wu X B and Liu C S 2011 Physica B 406 3114 [11] Li G X, Liu C S and Zhu Z G 2004 Chin. Phys. Lett. 21 2489 [12] Cao Q L, Wang P P, Huang D H, Yang J S, Wan M J and Wang F H 2014 J. Chem. Phys. 140 114505 [13] Dai X D, Kong Y, Li J H and Liu B X 2006 J. Phys.: Condens. Matter 18 4527 [14] Errandonea D, Schwager B, Ditz R, Gessmann C, Boehler R and Ross M 2001 Phys. Rev. B 63 132104 [15] Taioli S, Cazorla C, Gillan M J and Alfè D 2007 Phys. Rev. B 75 214103 [16] Liu Z L, Cai L C, Chen X R and Jing F Q 2008 Phys. Rev. B 77 024103 [17] Cazorla C and Gillan M J, Taioli S and Alfè D 2007 J. Chem. Phys. 126 194502 [18] Belonoshko A B, Burakovsky L, Chen S P, Johansson B, Mikhaylushkin A S, Preston D L, Simak S I and Swift D C 2008 Phys. Rev. Lett. 100 135701 [19] Dosson D P 2002 Phys. Earth Planet. Interiors 130 271 [20] Alfè D, Kresse G and Gillan M J 2000 Phys. Rev. B 61 132 [21] Dai J Y, Hou Y, Kang D D, Sun H Y, Wu J H and Yuan J M 2013 New J. Phys. 15 045003 [22] Cao Q L, Wang W L, Li Y D and Liu C S 2011 J. Chem. Phys. 134 044508 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|