Chin. Phys. Lett.  2014, Vol. 31 Issue (05): 057303    DOI: 10.1088/0256-307X/31/5/057303
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Forward Current Transport Mechanisms of Ni/Au–InAlN/AlN/GaN Schottky Diodes
WANG Xiao-Feng, SHAO Zhen-Guang, CHEN Dun-Jun**, LU Hai, ZHANG Rong, ZHENG You-Dou
Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093
Cite this article:   
WANG Xiao-Feng, SHAO Zhen-Guang, CHEN Dun-Jun et al  2014 Chin. Phys. Lett. 31 057303
Download: PDF(712KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We fabricate two Ni/Au-In0.17Al0.83N/AlN/GaN Schottky diodes on substrates of sapphire and Si, respectively, and investigate their forward-bias current transport mechanisms by temperature-dependent current-voltage measurements. In the temperature range of 300–485 K, the Schottky barrier heights (SBHs) calculated by using the conventional thermionic-emission (TE) model are strongly positively dependent on temperature, which is in contrast to the negative-temperature-dependent characteristic of traditional semiconductor Schottky diodes. By fitting the forward-bias IV characteristics using different current transport models, we find that the tunneling current model can describe generally the IV behaviors in the entire measured range of temperature. Under the high forward bias, the traditional TE mechanism also gives a good fit to the measured IV data, and the actual barrier heights calculated according to the fitting TE curve are 1.434 and 1.413 eV at 300 K for InAlN/AlN/GaN Schottky diodes on Si and the sapphire substrate, respectively, and the barrier height shows a slightly negative temperature coefficient. In addition, a formula is given to estimate SBHs of Ni/Au–InAlN/AlN/GaN Schottky diodes taking the Fermi-level pinning effect into account.
Published: 24 April 2014
PACS:  73.61.Ey (III-V semiconductors)  
  73.40.Kp (III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
  85.30.Kk (Junction diodes)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/5/057303       OR      https://cpl.iphy.ac.cn/Y2014/V31/I05/057303
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Xiao-Feng
SHAO Zhen-Guang
CHEN Dun-Jun
LU Hai
ZHANG Rong
ZHENG You-Dou
[1] Yuan L, Chen H and Chen K J 2011 IEEE Electron Device Lett. 32 303
[2] Chen W J, Wong K Y and Chen K J 2009 IEEE Electron Device Lett. 30 430
[3] Wu Y F, Moore M, Saxler A, Wisleder T and Parikh P 2006 IEEE Device Res. Conf. (June 26–28 2006 State College PA, USA) p 151
[4] Cao D S, Lu H, Chen D J, Han P, Zhang R and Zheng Y D 2011 Chin. Phys. Lett. 28 017303
[5] Yu H, Caliskan D and Ozbay E 2006 J. Appl. Phys. 100 033501
[6] Hums C, Bl?sing J, Dadgar A, Diez A, Hempel T, Christen J, Krost A, Lorenz K and Alves E 2007 Appl. Phys. Lett. 90 022105
[7] Song J, Xu F J, Yan X D, Lin F, Huang C C, You, L P, Yu, T J, Wang X Q, Shen B and Wei K 2010 Appl. Phys. Lett. 97 232106
[8] Gonschorek M, Carlin J F, Feltin E, Py M A and Grandjean N 2006 Appl. Phys. Lett. 89 062106
[9] Mao W, Hao Y, Yang C, Zhang J C, Ma X H, Wang C, Liu H X, Yang L A, Zhang J F, Zheng X F, Zhang K, Chen Y H and Yang L Y 2013 Chin. Phys. Lett. 30 058502
[10] Nam T C, Jang J S and Seong T Y 2012 Curr. Appl. Phys. 12 1081
[11] Arslan E, Alt?ndal S, ?z?elik S and Ozbay E 2009 J. Appl. Phys. 105 023705
[12] Dong X, Li Z H, Li Z Y, Zhou J J, Li L, Li Y, Zhang L, Xu X J, Xu X and Han C L 2010 Chin. Phys. Lett. 27 037102
[13] Rhoderick E H 1988 Metal-Semiconductor Contacts (Oxford: Clarendon Press) p 297
[14] Sze S M 2007 Physics of Semiconductor Devices 3nd edn (New York: Wiley) pp 154, 429
[15] Levinshtein M, Rumyantsev S L and Shur M S 2001 Properties of Advanced Semiconductor Materials (New York: Wiley) p 41
[16] Donoval D, Barus M and Zdimal M 1991 Solid-State Electron. 34 1365
[17] Crowell R and Rideout V L 1969 Solid-State Electron. 12 89
[18] Mead C A and Spitzer W G 1964 Phys. Rev. 134 A713
[19] Butté R, Carlin J F, Feltin E, Gonschorek M, Nicolay S, Christmann G, Simeonov D, Castiglia A, Dorsaz J, Buehlmann H J, Christopoulos S, Baldassarri H?ger von H?gersthal G, Grundy A J D, Mosca M, Pinquier C, Py M A, Demangeot F, Frandon J, Lagoudakis P G, Baumberg J J and Grandjean N 2007 J. Phys. D: Appl. Phys. 40 6328
[20] Belyaev A E, Boltovets N S, Ivanov V N, Klad'ko V P, Konakova R V, Kudrik Ya Ya, Kuchuk A V, Milenin V V, Sveshnikov Yu N and Sheremet V N 2008 Semiconductors 42 689
[21] Hasegawa H and Akazawa M 2009 J. Korean Phys. Soc. 55 1167
[22] Liou B T, Yen S H and Kuo Y K 2005 Appl. Phys. A 81 651
Related articles from Frontiers Journals
[1] Da-Hong Su, Yun Xu, Wen-Xin Wang, Guo-Feng Song. Growth Control of High-Performance InAs/GaSb Type-II Superlattices via Optimizing the In/Ga Beam-Equivalent Pressure Ratio[J]. Chin. Phys. Lett., 2020, 37(3): 057303
[2] SiQin-GaoWa Bao, Jie-Jie Zhu, Xiao-Hua Ma, Bin Hou, Ling Yang, Li-Xiang Chen, Qing Zhu, Yue Hao. Effects of Low-Damage Plasma Treatment on the Channel 2DEG and Device Characteristics of AlGaN/GaN HEMTs[J]. Chin. Phys. Lett., 2020, 37(2): 057303
[3] Zhong-Qiu Xing, Yong-Jie Zhou, Yu-Huai Liu, Fang Wang. Reduction of Electron Leakage of AlGaN-Based Deep Ultraviolet Laser Diodes Using an Inverse-Trapezoidal Electron Blocking Layer[J]. Chin. Phys. Lett., 2020, 37(2): 057303
[4] Yi-Fu Wang, Mussaab I. Niass, Fang Wang, Yu-Huai Liu. Reduction of Electron Leakage in a Deep Ultraviolet Nitride Laser Diode with a Double-Tapered Electron Blocking Layer[J]. Chin. Phys. Lett., 2019, 36(5): 057303
[5] Xin Li, Yu Zhao, Min Xiong, Qi-Hua Wu, Yan Teng, Xiu-Jun Hao, Yong Huang, Shuang-Yuan Hu, Xin Zhu. High-Quality InSb Grown on Semi-Insulting GaAs Substrates by Metalorganic Chemical Vapor Deposition for Hall Sensor Application[J]. Chin. Phys. Lett., 2019, 36(1): 057303
[6] Zhi-Hui Wang, Xiao-Lan Wang, Jun-Lin Liu, Jian-Li Zhang, Chun-Lan Mo, Chang-Da Zheng, Xiao-Ming Wu, Guang-Xu Wang, Feng-Yi Jiang. Effect of Green Quantum Well Number on Properties of Green GaN-Based Light-Emitting Diodes[J]. Chin. Phys. Lett., 2018, 35(8): 057303
[7] Chu-Hong Yang, Shu-Yu Zheng, Jie Fan, Xiu-Nian Jing, Zhong-Qing Ji, Guang-Tong Liu, Chang-Li Yang, Li Lu. Transport Studies on GaAs/AlGaAs Two-Dimensional Electron Systems Modulated by Triangular Array of Antidots[J]. Chin. Phys. Lett., 2018, 35(7): 057303
[8] Ben Du, Yi Gu, Yong-Gang Zhang, Xing-You Chen, Ying-Jie Ma, Yan-Hui Shi, Jian Zhang. Wavelength Extended InGaAsBi Detectors with Temperature-Insensitive Cutoff Wavelength[J]. Chin. Phys. Lett., 2018, 35(7): 057303
[9] Xi-xia Tao, Chun-lan Mo, Jun-lin Liu, Jian-li Zhang, Xiao-lan Wang, Xiao-ming Wu, Long-quan Xu, Jie Ding, Guang-xu Wang, Feng-yi Jiang. Electroluminescence from the InGaN/GaN Superlattices Interlayer of Yellow LEDs with Large V-Pits Grown on Si (111)[J]. Chin. Phys. Lett., 2018, 35(5): 057303
[10] Ai-Xing Li, Chun-Lan Mo, Jian-Li Zhang, Xiao-Lan Wang, Xiao-Ming Wu, Guang-Xu Wang, Jun-Lin Liu, Feng-Yi Jiang. Effect of Mg-Preflow for p-AlGaN Electron Blocking Layer on the Electroluminescence of Green LEDs with V-Shaped Pits[J]. Chin. Phys. Lett., 2018, 35(2): 057303
[11] Xiang-Mi Zhan, Quan Wang, Kun Wang, Wei Li, Hong-Ling Xiao, Chun Feng, Li-Juan Jiang, Cui-Mei Wang, Xiao-Liang Wang, Zhan-Guo Wang. Fast Electrical Detection of Carcinoembryonic Antigen Based on AlGaN/GaN High Electron Mobility Transistor Aptasensor[J]. Chin. Phys. Lett., 2017, 34(9): 057303
[12] Xiang-Mi Zhan, Mei-Lan Hao, Quan Wang, Wei Li, Hong-Ling Xiao, Chun Feng, Li-Juan Jiang, Cui-Mei Wang, Xiao-Liang Wang, Zhan-Guo Wang. Highly Sensitive Detection of Deoxyribonucleic Acid Hybridization Using Au-Gated AlInN/GaN High Electron Mobility Transistor-Based Sensors[J]. Chin. Phys. Lett., 2017, 34(4): 057303
[13] Han-Han Lu, Jing-Ping Xu, Lu Liu. Interfacial and Electrical Properties of GaAs Metal-Oxide-Semiconductor Capacitor with ZrAlON as the Interfacial Passivation Layer[J]. Chin. Phys. Lett., 2017, 34(4): 057303
[14] Xue-Feng Zheng, Ao-Chen Wang, Xiao-Hui Hou, Ying-Zhe Wang, Hao-Yu Wen, Chong Wang, Yang Lu, Wei Mao, Xiao-Hua Ma, Yue Hao. Influence of the Diamond Layer on the Electrical Characteristics of AlGaN/GaN High-Electron-Mobility Transistors[J]. Chin. Phys. Lett., 2017, 34(2): 057303
[15] Feng Dai, Xue-Feng Zheng, Pei-Xian Li, Xiao-Hui Hou, Ying-Zhe Wang, Yan-Rong Cao, Xiao-Hua Ma, Yue Hao. The Transport Mechanisms of Reverse Leakage Current in Ultraviolet Light-Emitting Diodes[J]. Chin. Phys. Lett., 2016, 33(11): 057303
Viewed
Full text


Abstract