Chin. Phys. Lett.  2014, Vol. 31 Issue (05): 054301    DOI: 10.1088/0256-307X/31/5/054301
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Suppression of the Resonant Scattering in Imperfect Acoustic Cloaking with a Lossy Medium in ?3
LI Meng-Lei, KIM Seungil**
Department of Mathematics and Research Institute for Basic Sciences, Kyung Hee University, Seoul 130-701, Korea
Cite this article:   
LI Meng-Lei, KIM Seungil 2014 Chin. Phys. Lett. 31 054301
Download: PDF(551KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract It has been realized that resonance frequencies of imperfect acoustic cloaking based on a small perturbation of the transformation acoustics in ?2 are located near Dirichlet eigenvalues of the cloaked region [Chin. Phys. Lett. 26 (2009) 014301; 29 (2012) 124301]. In this work, we study the performance of the three-dimensional approximate cloaking system based on the transformation acoustics and show that the cloaking effect may be deteriorated at zeroth order Neumann eigenvalues of the concealed region. In particular, transmitted fields into the concealed region can be extremely resonated at frequencies corresponding to the zeroth-order Neumann eigenvalues while scattered fields are suppressed well for any frequency. To enhance the cloaking effect at resonance frequencies, we introduce a lossy medium inside the cloaked region and show that the new proposal can reduce the intensity of transmitted fields significantly due to the lossy medium.
Published: 24 April 2014
PACS:  43.20.Bi (Mathematical theory of wave propagation)  
  43.20.Fn (Scattering of acoustic waves)  
  43.25.Gf (Standing waves; resonance)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/5/054301       OR      https://cpl.iphy.ac.cn/Y2014/V31/I05/054301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Meng-Lei
KIM Seungil
[1] Cheng Y and Liu X J 2009 Chin. Phys. Lett. 26 014301
[2] Kim S 2012 Chin. Phys. Lett. 29 124301
[3] Pendry J B, Schurig D and Smith D R 2006 Science 312 1780
[4] Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F and Smith D R 2006 Science 314 977
[5] Chen H and Chan C T 2007 Appl. Phys. Lett. 91 183518
[6] Cummer S A and Schurig D 2007 New J. Phys. 9 45
[7] Munteanu L and Chiroiu V 2011 New J. Phys. 13 083031
[8] Torrent D and Sánchez-Dehesa J 2008 New J. Phys. 10 063015
[9] Chen H and Chan C T 2010 J. Phys. D: Appl. Phys. 43 113001
[10] Milton G W, Braine M and Willis J R 2006 New J. Phys. 8 248
[11] Parnell W J and Shearer T 2013 Wave Motion 50 1140
[12] Greenleaf A, Kurylev Y, Lassas M and Uhlmann G 2008 New J. Phys. 10 115024
[13] Ruan Z, Yan M, Neff C W and Qiu M 2007 Phys. Rev. Lett. 99 113903
[14] Cheng Y and Liu X J 2008 Appl. Phys. Lett. 93 071903
[15] Abramowitz M and Stegun I A 1964 Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Dover: New York) chap 9 p 355
[16] Nguyen H 2010 Commun. Pure Appl. Math. 63 1505
Related articles from Frontiers Journals
[1] Ze-Zhong Zhang, Wen-Yu Luo, Ren-He Zhang. An Efficient Three-Dimensional Coupled Normal Mode Model and Its Application to Internal Solitary Wave Problems[J]. Chin. Phys. Lett., 2018, 35(8): 054301
[2] Fei-Long Zhu, Eric I. Thorsos, Feng-Hua Li. Coupled Perturbed Modes over Sloping Penetrable Bottom[J]. Chin. Phys. Lett., 2017, 34(7): 054301
[3] DING De-Sheng, SHEN Chang-Sheng, LU Hua. A Novel Algorithm for the Sound Field of Rectangular-Shaped Transducers[J]. Chin. Phys. Lett., 2015, 32(12): 054301
[4] GUO Liang, LIU Guang-Fu, YANG Yan-Ju, LIU Guo-Qiang. Vector Based Reconstruction Method in Magneto-Acousto-Electrical Tomography with Magnetic Induction[J]. Chin. Phys. Lett., 2015, 32(09): 054301
[5] ZHANG Ling-Shan, PENG Zhao-Hui. Effect of Source's Height on Air-to-Water Sound Transmission with a Small-Scale Rough Sea Surface[J]. Chin. Phys. Lett., 2014, 31(09): 054301
[6] DING De-Sheng, LÜ Hua, SHEN Chang-Sheng. A Novel Algorithm for the Sound Field of Elliptically Shaped Transducers[J]. Chin. Phys. Lett., 2014, 31(06): 054301
[7] GUO Liang, LIU Guo-Qiang, XIA Hui, CHEN Jing. Forward Procedure of Magneto-Acousto-Electric Signal in Radially Stratified Medium of Conductivity for Logging Models[J]. Chin. Phys. Lett., 2013, 30(12): 054301
[8] KIM Seungil. Analysis of Imperfect Acoustic Cloaking Resonances[J]. Chin. Phys. Lett., 2012, 29(12): 054301
[9] HUANG Xian-He, WANG Yan, TANG Xiao-Yu, FU Wei. Energy Trapping in Low Phase Noise Bulk Acoustic Wave Oscillators[J]. Chin. Phys. Lett., 2012, 29(10): 054301
[10] CUI Zhi-Wen, WANG Ke-Xie. A Discussion on the Formula Construction of the BISQ Model[J]. Chin. Phys. Lett., 2012, 29(9): 054301
[11] DAI Yu-Rong, DING De-Sheng. Further Notes on the Gaussian Beam Expansion[J]. Chin. Phys. Lett., 2012, 29(2): 054301
[12] FAN Li**, ZHANG Shu-Yi, ZHANG Hui . Transmission Characteristics in Tubular Acoustic Metamaterials Studied with Fluid Impedance Theory[J]. Chin. Phys. Lett., 2011, 28(10): 054301
[13] LIU Wei, YANG Jun. A Simple and Accurate Method for Calculating the Gaussian Beam Expansion Coefficients[J]. Chin. Phys. Lett., 2010, 27(12): 054301
[14] LIANG Bin, ZOU Xin-Ye, CHENG Jian-Chun. Phase Transition in Acoustic Localization in a Soft Medium Permeated with Air Bubbles[J]. Chin. Phys. Lett., 2009, 26(2): 054301
[15] ZHANG Qin-Lei, YANG Guang-Can. Experimental Investigation of Energy Level Dynamics in luminium Blocks with Temperature Distribution[J]. Chin. Phys. Lett., 2008, 25(8): 054301
Viewed
Full text


Abstract