Chin. Phys. Lett.  2014, Vol. 31 Issue (05): 051201    DOI: 10.1088/0256-307X/31/5/051201
THE PHYSICS OF ELEMENTARY PARTICLES AND FIELDS |
Revisiting 1?+ Light Hybrid from Monte-Carlo Based QCD Sum Rules
ZHANG Zhu-Feng1**, JIN Hong-Ying2, T. G. Steele3
1Department of Physics, Ningbo University, Ningbo 315211
2Zhejiang Institute of Modern Physics, Zhejiang University, Hangzhou 310027
3Department of Physics and Engineering Physics, University of Saskatchewan, Saskatoon S7N 5E2, Canada
Cite this article:   
ZHANG Zhu-Feng, JIN Hong-Ying, T. G. Steele 2014 Chin. Phys. Lett. 31 051201
Download: PDF(601KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We reanalyze the 1?+ light hybrid from QCD sum rules with a Monte-Carlo based on uncertainty analysis. With 30% uncertainties in the accepted central values for QCD condensates and other input parameters, we obtain a prediction on the 1?+ hybrid mass of 1.71 ±0.22 GeV, which covers the mass of π1(1600). We also study the correlations between the input and output parameters of QCD sum rules.
Published: 24 April 2014
PACS:  12.38.Lg (Other nonperturbative calculations)  
  12.39.Mk (Glueball and nonstandard multi-quark/gluon states)  
  14.40.Rt (Exotic mesons)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/5/051201       OR      https://cpl.iphy.ac.cn/Y2014/V31/I05/051201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Zhu-Feng
JIN Hong-Ying
T. G. Steele
[1] Beringer J et al 2012 Phys. Rev. D 86 010001
[2] Zhang R, Ding R B, Li X Q and Page P R 2002 Phys. Rev. D 65 096005
[3] Zhang Z F and Jin H Y 2005 Phys. Rev. D 71 011502
[4] General I J, Wang P, Cotanch S R and Llanes-Estrada F J 2007 Phys. Lett. B 653 216
[5] Chen H X, Hosaka A and Zhu S L 2008 Phys. Rev. D 78 054017
[6] Barnes T, Close F E and Swanson E S 1995 Phys. Rev. D 52 5242
[7] Bernard C W et al 1997 Phys. Rev. D 56 7039
[8] Balitsky I I, Diakonov D and Yung A V 1982 Phys. Lett. B 112 71
[9] Govaerts J, Viron F de, Gusbin D and Weyers J 1983 Phys. Lett. B 128 262
[10] Latorre J I, Narison S, Pascual P and Tarrach R 1984 Phys. Lett. B 147 169
[11] Narison S 2009 Phys. Lett. B 675 319
[12] Shifman M A, Vainshtein A I and Zakharov V I 1979 Nucl. Phys. B 147 385
[13] Shifman M A, Vainshtein A I and Zakharov V I 1979 Nucl. Phys. B 147 448
[14] Narison S 2004 QCD as a Theory of Hadrons: From Partons to Confinement (New York: Cambridge University Press)
[15] Leinweber D B 1997 Ann. Phys. 254 328
[16] Lee F X 1998 Phys. Rev. C 57 322
[17] Lee F X, Leinweber D B and Jin X M 1997 Phys. Rev. D 55 4066
[18] Lee F X 1998 Phys. Lett. B 419 14
[19] Wang L and Lee F X 2008 Phys. Rev. D 78 013003
[20] Wang L and Lee F X 2011 Comput. Phys. Commun. 182 1721
[21] Govaerts J, Viron F de, Gusbin D and Weyers J 1984 Nucl. Phys. B 248 1
[22] Latorre J I, Pascual P and Narison S 1987 Z. Phys. C 34 347
[23] Balitsky I I, Diakonov D and Yung A V 1986 Z. Phys. C 33 265
[24] Chetyrkin K G and Narison S 2000 Phys. Lett. B 485 145
[25] Jin H Y and Korner J G 2001 Phys. Rev. D 64 074002
[26] Jin H Y, Korner J G and Steele T G 2003 Phys. Rev. D 67 014025
[27] Narison S and Rafael E de 1981 Phys. Lett. B 103 57
[28] Bevington P R and Robinson D K 2003 Data Reduction and Error Analysis for the Physical Sciences (New York: McGraw-Hill)
[29] Matheus R de and Narison S 2006 Nucl. Phys. Proc. Suppl. 152 236
[30] Elias V, Fariborz A H, Shi F and Steele T G 1998 Nucl. Phys. A 633 279
[31] Chen W, Jin H Y, Kleiv R T, Steele T G, Wang M and Xu Q 2013 Phys. Rev. D 88 045027
[32] Kataev A L, Krasnikov N V and Pivovarov A A 1983 Nuovo Cim. A 76 723
[33] Kataev A L, Krasnikov N V and Pivovarov A A 1983 Phys. Lett. B 123 93
[34] Krasnikov N V and Pivovarov A A 1982 Phys. Lett. B 112 397
Related articles from Frontiers Journals
[1] Hua-Xing Chen, Niu Su, and Shi-Lin Zhu. QCD Axial Anomaly Enhances the $\eta \eta^\prime$ Decay of the Hybrid Candidate $\eta_1(1855)$[J]. Chin. Phys. Lett., 2022, 39(5): 051201
[2] Si-Xue Qin and Craig D. Roberts. Resolving the Bethe–Salpeter Kernel[J]. Chin. Phys. Lett., 2021, 38(7): 051201
[3] Si-Xue Qin and C. D. Roberts. Impressions of the Continuum Bound State Problem in QCD[J]. Chin. Phys. Lett., 2020, 37(12): 051201
[4] Hua-Xing Chen, Wei Chen, Rui-Rui Dong, and Niu Su. $X_0(2900)$ and $X_1(2900)$: Hadronic Molecules or Compact Tetraquarks[J]. Chin. Phys. Lett., 2020, 37(10): 051201
[5] DING Jing-Zhi, JIN Hong-Ying. Quark and Gluon Condensates at Finite Temperatures by the Linear Sigma Model Approach[J]. Chin. Phys. Lett., 2014, 31(08): 051201
[6] MO Xin, LIU Jue-Ping. The Scalar Photon Light-Cone Distribution Amplitude in the Instanton Vacuum Model of QCD[J]. Chin. Phys. Lett., 2014, 31(04): 051201
[7] LU Chang-Fang, LÜ Xiao-Fu. Influence of Quark Current Mass on Quark Condensate at Finite Temperature[J]. Chin. Phys. Lett., 2013, 30(9): 051201
[8] LI Hua, LUO Xin-Lian, JIANG Yu, ZONG Hong-Shi, **. The Renormalized Equation of State and Quark Star[J]. Chin. Phys. Lett., 2010, 27(12): 051201
[9] GUO Xiao-Bo, TAO Jun, LI Lei, WANG Shun-Jin,. Light Flavor Vector and Pseudo Vector Mesons from a Light-Cone QCD Inspired Effective Hamiltonian Model with SU(3) Flavor Mixing Interactions[J]. Chin. Phys. Lett., 2010, 27(6): 051201
[10] GUO Xiao-Bo, TAO Jun, LI Lei, ZHOU Shan-Gui, WANG Shun-Jin,. A Light-Cone QCD Inspired Effective Hamiltonian Model with SU(3) Flavor Mixing[J]. Chin. Phys. Lett., 2009, 26(4): 051201
[11] WANG Zhi-Gang. Reanalysis of the (0+,1+) States Bs0 and Bs1 with QCD Sum Rules[J]. Chin. Phys. Lett., 2008, 25(11): 051201
[12] HUANG Tao, ZUO Fen. Remarks on Two-Dimensional Power Correction in Soft Wall Model[J]. Chin. Phys. Lett., 2008, 25(10): 051201
[13] TAO Jun, LI Lei, ZHOU Shan-Gui, WANG Shun-Jin. A Light-Cone QCD Inspired Effective Hamiltonian Model for Pseudoscalar and Scalar Mesons[J]. Chin. Phys. Lett., 2008, 25(9): 051201
[14] JIN Hong-Ying, LIU Shao-Min, ZHANG Zhu-Feng, LI Xue-Qian. Chiral Suppression and SU(3) Symmetry in Scalar Glueball Decays[J]. Chin. Phys. Lett., 2008, 25(5): 051201
[15] ZHANG Ying, WANG Qing. Gauge Covariant Fermion Propagator in the Presence of Arbitrary External Gauge Field and Its Schwinger--Dyson Equation[J]. Chin. Phys. Lett., 2008, 25(4): 051201
Viewed
Full text


Abstract