Chin. Phys. Lett.  2014, Vol. 31 Issue (04): 044101    DOI: 10.1088/0256-307X/31/4/044101
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Distributed Field Rotator Composed of Isolated Components
LIU Guo-Chang**, LI Chao**, SHAO Jin-Jin, FANG Guang-You
Key Laboratory of Electromagnetic Radiation and Sensing Technology, Chinese Academy of Sciences, Beijing 100190
Cite this article:   
LIU Guo-Chang, LI Chao, SHAO Jin-Jin et al  2014 Chin. Phys. Lett. 31 044101
Download: PDF(1065KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Transformation optics offers remarkable control over electromagnetic fields and has recently opened an exciting gateway to design 'field rotator devices'. We propose a distributed field rotator with open windows based on composite transformation optics, which consists of a central circular region and several isolated components. The number, position and size of the components can be controlled freely by the design purpose. Full-wave simulations are performed to demonstrate its function, which is equivalent to a classic field rotator. However, such a distributed rotator makes it much easier to access and make use of the rotated field in the central region, compared to the closed classic field rotator, especially in the case of 3D situations.
Received: 29 October 2013      Published: 25 March 2014
PACS:  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
  42.25.Fx (Diffraction and scattering)  
  42.25.Gy (Edge and boundary effects; reflection and refraction)  
  42.79.-e (Optical elements, devices, and systems)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/4/044101       OR      https://cpl.iphy.ac.cn/Y2014/V31/I04/044101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIU Guo-Chang
LI Chao
SHAO Jin-Jin
FANG Guang-You
[1] Leonhardt U 2006 Science 312 1777
[2] Pendry J B, Schurig D and Smith D R 2006 Science 312 1780
[3] Shalaev V M 2008 Science 322 384
[4] Chen H Y, Chan C T and Sheng P 2010 Nat. Mater. 9 387
[5] Zhang X and Zhu S N 2010 Front. Phys. 5 219
[6] Lai Y et al 2010 Front. Phys. 5 308
[7] Schurig D et al 2006 Science 314 977
[8] Cai W and Chettiar U K 2007 Nat. Photon. 1 224
[9] Li J and Pendry J B 2008 Phys. Rev. Lett. 101 203901
[10] Tretyakov S et al 2009 Phys. Rev. Lett. 103 103905
[11] Smolyaninov I I et al 2009 Phys. Rev. Lett. 102 213901
[12] Leonhardt U and Tyc T 2009 Science 323 110
[13] Liu R et al 2009 Science 323 366
[14] Valentine J et al 2009 Nat. Mater. 8 568
[15] Gabrielli L H et al 2009 Nat. Photon. 3 461
[16] Ergin T et al 2010 Science 328 337
[17] Xu Y D, Gao L and Chen H Y 2011 Front. Phys. 6 61
[18] Su Y H et al 2010 Chin. Phys. Lett. 27 094102
[19] Gao D B and Zeng X W 2012 Acta Phys. Sin. 61 184301 (in Chinese)
[20] Chen H Y and Chan C T 2007 Appl. Phys. Lett. 90 241105
[21] Rahm M et al 2008 Photon. Nanostruct. Fundam. Appl. 6 87
[22] Kildishev A V and Narimanov E E 2007 Opt. Lett. 32 3432
[23] Luo Y et al 2008 Phys. Rev. B 77 125127
[24] Farhat M, Guenneau S and Enoch S 2011 J. Comput. Phys. 230 2237
[25] Zang X F and Jiang C 2011 J. Opt. Soc. Am. B 28 1082
[26] Dai L M et al 2011 J. Microwaves 27 93
[27] Chen H Y and Chan C T 2008 Phys. Rev. B 78 054204
[28] Chen H Y et al 2009 Phys. Rev. Lett. 102 183903
[29] Wu Q N, Xu Y D and Chen H Y 2012 Front. Phys. 7 315
[30] Liu G C et al 2012 Appl. Phys. Lett. 101 224105
[31] Pendry J B 2000 Phys. Rev. Lett. 85 3966
[32] Pendry J B and Ramakrishna S A 2002 J. Phys.: Condens. Matter 14 8463
[33] Pendry J B and Ramakrishna S A 2003 J. Phys.: Condens. Matter 15 6345
[34] Kobayashi K 2006 J. Phys.: Condens. Matter 18 3703
[35] Lai Y et al 2009 Phys. Rev. Lett. 102 093901
[36] Lai Y et al 2009 Phys. Rev. Lett. 102 253902
[37] Yan W, Yan M and Qiu M 2008 arXiv:0806.3231v1 [physics.optics]
[38] Jiang W X and Cui T J 2010 Opt. Express 18 5161
[39] Han T C, Qiu C W and Tang X H 2010 Opt. Lett. 35 2642
[40] Jiang W X et al 2013 Adv. Funct. Mater. 23 4028
[41] Jiang W X et al 2013 Appl. Phys. Lett. 103 214104
Related articles from Frontiers Journals
[1] Rui Zhang, Fan Ding, Xujin Yuan, and Mingji Chen. Influence of Spatial Correlation Function on Characteristics of Wideband Electromagnetic Wave Absorbers with Chaotic Surface[J]. Chin. Phys. Lett., 2022, 39(9): 044101
[2] Fei Xiang, Lin Zhang, Tao Chen, Yuan-Hong Zhong, Jin Li. Transverse Propagation Characteristics and Coherent Effect of Gaussian Beams *[J]. Chin. Phys. Lett., 0, (): 044101
[3] Fei Xiang, Lin Zhang, Tao Chen, Yuan-Hong Zhong, Jin Li. Transverse Propagation Characteristics and Coherent Effect of Gaussian Beams[J]. Chin. Phys. Lett., 2020, 37(6): 044101
[4] Zong-Cheng Xu, Liang Wu, Ya-Ting Zhang, De-Gang Xu, Jian-Quan Yao. Photoexcited Blueshift and Redshift Switchable Metamaterial Absorber at Terahertz Frequencies[J]. Chin. Phys. Lett., 2019, 36(12): 044101
[5] Guo-Guo Wei, Chong Miao, Hao-Chong Huang, Hua Gao. Zero Refractive Index Properties of Two-Dimensional Photonic Crystals with Dirac Cones[J]. Chin. Phys. Lett., 2019, 36(3): 044101
[6] Shou-Qing Jia. Finite Volume Time Domain with the Green Function Method for Electromagnetic Scattering in Schwarzschild Spacetime[J]. Chin. Phys. Lett., 2019, 36(1): 044101
[7] Xiao-Xiao Zhang, Zhen-Sen Wu, Xiang Su. Influence of Breaking Waves and Wake Bubbles on Surface-Ship Wake Scattering at Low Grazing Angles[J]. Chin. Phys. Lett., 2018, 35(7): 044101
[8] Wen-Hao Xu, Zhan-Ying Yang, Chong Liu, Wen-Li Yang. Localized Optical Waves in Defocusing Regime of Negative-Index Materials[J]. Chin. Phys. Lett., 2017, 34(10): 044101
[9] Jin-Xing Li, Min Zhang, Peng-Bo Wei. Effects of Breaking Waves on Composite Backscattering from Ship-Ocean Scene[J]. Chin. Phys. Lett., 2017, 34(9): 044101
[10] Mohammad Hosein Fakheri, Hooman Barati, Ali Abdolali. Carpet Cloak Design for Rough Surfaces[J]. Chin. Phys. Lett., 2017, 34(8): 044101
[11] Xiao-Jing Zhang, Xi Wu, Ya-Dong Xu. Controlling of the Polarization States of Electromagnetic Waves Using Epsilon-near-Zero Metamaterials[J]. Chin. Phys. Lett., 2017, 34(8): 044101
[12] D. Basandrai, R. K. Bedi, A. Dhami, J. Sharma, S. B. Narang, K. Pubby, A. K. Srivastava. Radiation Losses in the Microwave X Band in Al-Cr Substituted Y-Type Hexaferrites[J]. Chin. Phys. Lett., 2017, 34(4): 044101
[13] Wei-Na Cui, Hong-Xia Li, Min Sun, Yong-Yuan Zhu. Coupling of Cutoff Modes in a Chain of Nonlinear Metallic Nanorods[J]. Chin. Phys. Lett., 2016, 33(12): 044101
[14] Ming-Liang Liao, Yan-Yu Wei, Hai-Long Wang, Yu Huang, Jin Xu, Yang Liu, Guo Guo, Xin-Jian Niu, Yu-Bin Gong, Gun-Sik Park. An Open Rectangular Waveguide Grating for Millimeter-Wave Traveling-Wave Tubes[J]. Chin. Phys. Lett., 2016, 33(09): 044101
[15] Ming-Liang Liao, Yan-Yu Wei, Hai-Long Wang, Jin Xu, Yang Liu, Guo Guo, Xin-Jian Niu, Yu-Bin Gong, Gun-Sik Park. Design of a Novel Folded Waveguide for 60-GHz Traveling-Wave Tubes[J]. Chin. Phys. Lett., 2016, 33(04): 044101
Viewed
Full text


Abstract