Chin. Phys. Lett.  2014, Vol. 31 Issue (04): 042101    DOI: 10.1088/0256-307X/31/4/042101
NUCLEAR PHYSICS |
Quasi Random Phase Approximation Predictions on Two-Neutrino Double Beta Decay Half-Lives to the First 2+ State
S. Unlu**
Department of Physics, Mehmet Akif Ersoy University, Burdur 15030, Turkey
Cite this article:   
S. Unlu 2014 Chin. Phys. Lett. 31 042101
Download: PDF(460KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Two-neutrino double beta decay (2νββ) half-lives to the first excited state are calculated in the framework of quasi random phase approximation. The quadrupole transition probabilities and the 2νββ decay amplitudes to the final ground states are reproduced by using adjustable parameters. The obtained half-lives are compared with the corresponding experimental data.
Received: 03 December 2013      Published: 25 March 2014
PACS:  21.60.Jz (Nuclear Density Functional Theory and extensions (includes Hartree-Fock and random-phase approximations))  
  23.40.-s (β-decay;double β-decay; electron and muon capture)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/4/042101       OR      https://cpl.iphy.ac.cn/Y2014/V31/I04/042101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
S. Unlu
[1] Klapdor-Kleingrothaus H V 1999 Nucl. Phys. (Proc. Suppl.) B 77 357
[2] Faessler A and Simkovic F 1998 J. Phys. G 24 2139
[3] Vogel P 2000 arXiv:nucl-th/0005020
[4] Suhonen J and Civitarese O 1998 Phys. Rep. 300 123
[5] Bilenky S M, Faessler A and Simkovic F 2004 Phys. Rev. D 70 033003
[6] Benes P, Faessler A, Kovalenko S and Simkovic F 2005 Phys. Rev. D 71 077901
[7] Bilenky S M, Faessler A, Gutsche T and Simkovic F 2005 Phys. Rev. D 72 053015
[8] Faessler A, Gutsche T, Kovalenko S and Simkovic F 2008 Phys. Rev. D 77 113012
[9] Rodin V, Faessler A, Simkovic F and Vogel P 2003 Phys. Rev. C 68 044302
[10] Kudomi N, Ejiri H, Nagata K, Okada K, Shibata T, Shima T and Tanaka J 1992 Phys. Rev. C 46 R2132
[11] Barabash A S 1990 JETP Lett. 51 207
[12] Barabash A S, Hubert F, Hubert Ph and Umatov V I 2004 JETP Lett. 79 10
[13] Arpesella C, Barabash A S, Bellotti E, Brofferio E, Fiorini E, Sverzellati P P and Umatov V I 1994 Europhys. Lett. 27 29
[14] Barabash A S, Gurriaran R, Hubert F, Hubert Ph, Reyss J L, Suhonen J and Umatov V I 1996 J. Phys. G 22 487
[15] Arnold R et al 2007 Nucl. Phys. A 781 209
[16] Kidd M F, Esterline J H, Tornow W, Barabash A S and Umatov V I 2009 Nucl. Phys. A 821 251
[17] Civitarese O and Suhonen J 1999 Nucl. Phys. A 653 321
[18] Griffiths A and Vogel P 1992 Phys. Rev. C 46 181
[19] Civitarese O and Suhonen J 1994 Nucl. Phys. A 575 251
[20] Suhonen J and Civitarese O 1994 Phys. Rev. C 49 3055
[21] Stoica S 1995 Phys. Lett. B 350 152
[22] Bobyk A and Kaminski W A 1995 J. Phys. G 21 229
[23] Schwieger J, Simkovic F, Faessler A and Kaminski W A 1997 J. Phys. G 23 1647
[24] Schwieger J, Simkovic F, Faessler A and Kaminski W A 1998 Phys. Rev. C 57 1738
[25] Toivanen J and Suhonen J 1997 Phys. Rev. C 55 2314
[26] Stoica S and Mihut I 1996 Nucl. Phys. A 602 197
[27] Aunola M and Suhonen J 1996 Nucl. Phys. A 602 133
[28] Ni D D and Ren Z Z 2012 J. Phys. G 39 125105
[29] Cheoun M K, Bobyk A, Faessler A, Simkovic F and Teneva G 1993 Nucl. Phys. A 561 74
[30] Halbleib Sr J A and Sorensen R A 1967 Nucl. Phys. A 98 542
[31] Baranger M 1960 Phys. Rev. 120 957
[32] Muther H and Polls A 1999 Phys. Rev. C 61 014304
[33] Raman S, Malarkey C H, Milner W T, Nestor Jr C W and Stelson P H 1987 At. Data Nucl. Data Tables 36 1
[34] Barabash A S 2010 Phys. Rev. C 81 035501
[35] Raduta A A and Raduta C M 2007 Phys. Lett. B 647 265
[36] Alston-Garnjost M et al 1993 Phys. Rev. Lett. 71 831
[37] Garcia A et al 1993 Phys. Rev. C 47 2910
[38] Barabash A S, Hubert F, Hubert Ph and Umatov V I 2001 Eur. Phys. J. A 11 143
Related articles from Frontiers Journals
[1] Jiawei Chen, Junchen Pei, Yu Qiang, and Jihuai Chi. Fission Properties of Neutron-Rich Nuclei around the End Point of $r$-Process[J]. Chin. Phys. Lett., 2023, 40(1): 042101
[2] Jun Xu. Constraining Isovector Nuclear Interactions with Giant Dipole Resonance and Neutron Skin in $^{208}$Pb from a Bayesian Approach[J]. Chin. Phys. Lett., 2021, 38(4): 042101
[3] Chen Liu , Shouyu Wang, Bin Qi , and Hui Jia . Possible Candidates for Chirality in the Odd-Odd As Isotopes[J]. Chin. Phys. Lett., 2020, 37(11): 042101
[4] Yan-Zhao Wang, Yang Li, Chong Qi, Jian-Zhong Gu. Pairing Effects on Bubble Nuclei[J]. Chin. Phys. Lett., 2019, 36(3): 042101
[5] Hong Lv, Shi-Sheng Zhang, Zhen-Hua Zhang, Yu-Qian Wu, Jiang Liu, Li-Gang Cao. Giant Monopole Resonance and Nuclear Incompressibility of Hypernuclei[J]. Chin. Phys. Lett., 2018, 35(6): 042101
[6] Hong Lv, Shi-Sheng Zhang, Zhen-Hua Zhang, Yu-Qian Wu, Li-Gang Cao. Pygmy and Giant Dipole Resonances in Proton-Rich Nuclei $^{17,18}$Ne[J]. Chin. Phys. Lett., 2017, 34(8): 042101
[7] Jian-Min Dong, Wei Zuo, Jian-Zhong Gu. First-Order Symmetry Energy Induced by Neutron–Proton Mass Difference[J]. Chin. Phys. Lett., 2016, 33(10): 042101
[8] Jing Peng, Wen-Qiang Xu. Tilted Axis Rotation of $^{57}$Mn in Covariant Density Functional Theory[J]. Chin. Phys. Lett., 2016, 33(01): 042101
[9] QI Bin, ZHANG Nai-Bo, WANG Shou-Yu, SUN Bao-Yuan. Hyperon Effects on the Spin Parameter of Rotating Neutron Stars[J]. Chin. Phys. Lett., 2015, 32(11): 042101
[10] WANG Yan-Zhao, GU Jian-Zhong, YU Guo-Liang, HOU Zhao-Yu. Tensor Force Effect on Shape Coexistence of N=28 Neutron-Rich Isotones[J]. Chin. Phys. Lett., 2014, 31(10): 042101
[11] WEN Pei-Wei, CAO Li-Gang . Spin-Flip Response Function of Finite Nuclei in a Fully Self-Consistent RPA Approach[J]. Chin. Phys. Lett., 2013, 30(5): 042101
[12] YANG Ding, CAO Li-Gang, MA Zhong-Yu. The Nuclear Incompressibility and Isoscalar Giant Dipole Resonance in Relativistic Continuum Random Phase Approximation[J]. Chin. Phys. Lett., 2013, 30(5): 042101
[13] TANG Zhong-Hua, LI Jia-Xing, JI Juan-Xia, ZHOU Tao. Cluster Structure in Be Isotopes within Point-Coupling Covariant Density Functional[J]. Chin. Phys. Lett., 2013, 30(1): 042101
[14] YANG Ding, CAO Li-Gang, MA Zhong-Yu. Fully Self-Consistency in Relativistic Random Phase Approximation[J]. Chin. Phys. Lett., 2012, 29(11): 042101
[15] LI Lu-Lu,MENG Jie,P. Ring,ZHAO En-Guang,ZHOU Shan-Gui,**. Odd Systems in Deformed Relativistic Hartree Bogoliubov Theory in Continuum[J]. Chin. Phys. Lett., 2012, 29(4): 042101
Viewed
Full text


Abstract