Chin. Phys. Lett.  2014, Vol. 31 Issue (03): 037303    DOI: 10.1088/0256-307X/31/3/037303
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Anomalous Dispersion Behavior of Staggered Arranged Metal Nanowire Arrays
CHEN Jun-Xue1**, SHANG Li-Ping2
1School of Science, Southwest University of Science and Technology, Mianyang 621010
2School of Information Engineering, Southwest University of Science and Technology, Mianyang 621010
Cite this article:   
CHEN Jun-Xue, SHANG Li-Ping 2014 Chin. Phys. Lett. 31 037303
Download: PDF(1879KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The dispersion relations of staggered arranged metal nanowire arrays are numerically investigated. It is demonstrated that the structure can support the propagation of plasmon modes with zero and negative group velocities derived directly from the dispersion curves, apart from normal plasmon modes with positive group velocities. Furthermore, the effects of the structural parameters on the dispersion behaviors of plasmon modes are also examined.
Received: 17 October 2013      Published: 28 February 2014
PACS:  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  42.82.Et (Waveguides, couplers, and arrays)  
  11.55.Fv (Dispersion relations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/3/037303       OR      https://cpl.iphy.ac.cn/Y2014/V31/I03/037303
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CHEN Jun-Xue
SHANG Li-Ping
[1] Yang J, Zhang J S, Wu X F and Gong Q H 2009 Chin. Phys. Lett. 26 067802
[2] Yuk J S, Jung J W, Jung S H, Han J A, Kim Y M and Ha K S 2005 Biosensors Bioelectronics 20 2189
[3] Lee K S and ElSayed M A 2006 J. Phys. Chem. B 110 19220
[4] Kneipp K, Wang Y, Kneipp H, Perelman L T, Itzkan I, Dasari R R and Feld M S 1997 Phys. Rev. Lett. 78 1667
[5] Nie S and Emory S R 1997 Science 275 1102
[6] Lippitz M, Van Dijk M A and Orrit M 2005 Nano Lett. 5 799
[7] Butet J, Duboisset J, Bachelier G, RussierAntoine I, Benichou E, Jonin C and Brevet P F 2010 Nano Lett. 10 1717
[8] Brongersma M L, Hartman J W and Atwater H A 2000 Phys. Rev. B 62 R16356
[9] Quinten M, Leitner A, Krenn J and Aussenegg F 1998 Opt. Lett. 23 1331
[10] Koenderink A F and Polman A 2006 Phys. Rev. B 74 033402
[11] Fung K H and Chan C T 2007 Opt. Lett. 32 973
[12] Simsek E 2010 Opt. Express 18 1722
[13] Conforti M and Guasoni M 2010 J. Opt. Soc. Am. B 27 1576
[14] Jacak W A 2013 Plasmonics 8 1317
[15] Pan D, Wei H and Xu H X 2013 Chin. Phys. B 22 097305
[16] Ditlbacher H, Hohenau A, Wagner D, Kreibig U, Rogers M, Hofer F, Aussenegg F R and Krenn J R 2005 Phys. Rev. Lett. 95 257403
[17] Wei H, Wang Z X, Tian X R, K?ll M and Xu H X 2011 Nat. Commun. 2 387
[18] Fang Y R, Li Z P, Huang Y Z, Nordlander P, Halas N J and Xu H X 2010 Nano Lett. 10 1950
[19] Zhang S P, Wei H, Bao K, Halas N J, Nordlander P and Xu H X 2011 Phys. Rev. Lett. 107 096801
[20] Szafranek D and Leviatan Y 2011 Opt. Express 19 25397
[21] Manjavacas A and García de Abajo F J 2009 Nano Lett. 9 1285
[22] Giannakis N A, Inglesfield J E, Jastrzebski A K and Young P R 2013 J. Opt. Soc. Am. B 30 1755
[23] Kuttge M, García de Abajo F J and Polman A 2010 Nano Lett. 10 1537
[24] Feigenbaum E and Orenstein M 2008 Phys. Rev. Lett. 101 163902
[25] Shin H and Fan S H 2006 Phys. Rev. Lett. 96 073907
[26] Lezec H J, Dionne J A and Atwater H A 2007 Science 316 430
[27] Raman A and Fan S H 2010 Phys. Rev. Lett. 104 087401
[28] Chen J X, Wang P, Zhang Z M, Lu Y H and Ming H 2011 Phys. Rev. E 84 026603
[29] Dionne J, Sweatlock L, Atwater H and Polman A 2006 Phys. Rev. B 73 035407
[30] Tournois P and Laude V 1997 Opt. Commun. 137 41
Related articles from Frontiers Journals
[1] Qirui Cui, Jinghua Liang, Yingmei Zhu, Xiong Yao, and Hongxin Yang. Quantum Anomalous Hall Effects Controlled by Chiral Domain Walls[J]. Chin. Phys. Lett., 2023, 40(3): 037303
[2] Xiang Xiong, Zhao-Yuan Zeng, Ruwen Peng, and Mu Wang. Directional Chiral Optical Emission by Electron-Beam-Excited Nano-Antenna[J]. Chin. Phys. Lett., 2023, 40(1): 037303
[3] Lili Zhao, Wenlu Lin, Y. J. Chung, K. W. Baldwin, L. N. Pfeiffer, and Yang Liu. Finite Capacitive Response at the Quantum Hall Plateau[J]. Chin. Phys. Lett., 2022, 39(9): 037303
[4] Yuan-Fang Yu, Ye Zhang, Fan Zhong, Lin Bai, Hui Liu, Jun-Peng Lu, and Zhen-Hua Ni. Highly Sensitive Mid-Infrared Photodetector Enabled by Plasmonic Hot Carriers in the First Atmospheric Window[J]. Chin. Phys. Lett., 2022, 39(5): 037303
[5] Gongzheng Chen, Jin Lan, Tai Min, and Jiang Xiao. Narrow Waveguide Based on Ferroelectric Domain Wall[J]. Chin. Phys. Lett., 2021, 38(8): 037303
[6] Yun-Fei Zou and Li Yu. Lower Exciton Number Strong Light Matter Interaction in Plasmonic Tweezers[J]. Chin. Phys. Lett., 2021, 38(2): 037303
[7] Jiancai Xue , Limin Lin , Zhang-Kai Zhou, and Xue-Hua Wang . Semi-Ellipsoid Nanoarray for Angle-Independent Plasmonic Color Printing[J]. Chin. Phys. Lett., 2020, 37(11): 037303
[8] Ping Jiang, Chao Li, Yuan-Yuan Chen, Gang Song, Yi-Lin Wang, Li Yu. Strong Exciton-Plasmon Coupling and Hybridization of Organic-Inorganic Exciton-Polaritons in Plasmonic Nanocavity[J]. Chin. Phys. Lett., 2019, 36(10): 037303
[9] Binbin Liu, Pujuan Ma, Wenjing Yu, Yadong Xu, Lei Gao. Tunable Bistability in the Goos–H?nchen Effect with Nonlinear Graphene[J]. Chin. Phys. Lett., 2019, 36(6): 037303
[10] Peng Sun, Wei-Wei Yu, Xiao-Hang Pan, Wei Wei, Yan Sun, Ning-Yi Yuan, Jian-Ning Ding, Wen-Chao Zhao, Xin Chen, Ning Dai. Fluorescence Enhancement of Metal-Capped Perovskite CH$_{3}$NH$_{3}$PbI$_{3}$ Thin Films[J]. Chin. Phys. Lett., 2017, 34(9): 037303
[11] A. R. Sadrolhosseini, M. Naseri, M. K. Halimah. Erratum: Polypyrrole Chitosan Cobalt Ferrite Nanoparticles Composite Layer for Measuring the Low Concentration of Fluorene Using Surface Plasmon Resonance [Chin. Phys. Lett. 34(2017)057501][J]. Chin. Phys. Lett., 2017, 34(8): 037303
[12] A. R. Sadrolhosseini, M. Naseri, M. K. Halimah. Polypyrrole Chitosan Cobalt Ferrite Nanoparticles Composite Layer for Measuring the Low Concentration of Fluorene Using Surface Plasmon Resonance[J]. Chin. Phys. Lett., 2017, 34(5): 037303
[13] Xin Sun. Generalized Hellmann–Feynman Theorem and Its Applications[J]. Chin. Phys. Lett., 2016, 33(12): 037303
[14] Chuan-Pu Liu, Xin-Li Zhu, Jia-Sen Zhang, Jun Xu, Yamin Leprince-Wang, Da-Peng Yu. Energy Levels of Coupled Plasmonic Cavities[J]. Chin. Phys. Lett., 2016, 33(08): 037303
[15] Xiao-Kun Zhao, Yuan Yao, Pei-Lin Lang, Hong-Lian Guo, Xi Shen, Yan-Guo Wang, Ri-Cheng Yu. Absorption Range and Energy Shift of Surface Plasmon in Au Monomer and Dimer[J]. Chin. Phys. Lett., 2016, 33(02): 037303
Viewed
Full text


Abstract