Chin. Phys. Lett.  2013, Vol. 30 Issue (9): 098701    DOI: 10.1088/0256-307X/30/9/098701
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
An Optimal Power-Law for Synchrony and Lognormally Synaptic Weighted Hub Networks
Yasuomi D. Sato**
Department of Brain Science and Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4, Hibikino, Wakamatsu, Kitakyushu, 808-0196, Japan Frankfurt Institute for Advanced Studies (FIAS), Johann Wolfgang Goethe University, Ruth-Moufang-Str.1, D60438, Frankfurt am Main, Germany
Cite this article:   
Yasuomi D. Sato 2013 Chin. Phys. Lett. 30 098701
Download: PDF(850KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Details about the structure of a network model are revealed at the spontaneous spike activity level, in which the power-law of synchrony is optimized to that observed in the CA3 hippocampal slice cultures. The network model is subject to spike noise with exponentially distributed interspike intervals. The excitatory (E) and/or inhibitory (I) neurons interact through synapses whose weights show a log-normal distribution. The spike behavior observed in the network model with the appropriate log-normal distributed synaptic weights fits best to that observed in the experiment. The best-fit is then achieved with high activities of I neurons having a hub-like structure, in which the I neurons, subject to optimized spike noise, are intensively projected from low active E neurons.
Received: 06 June 2013      Published: 21 November 2013
PACS:  87.19.lj (Neuronal network dynamics)  
  87.19.lp (Pattern formation: activity and anatomic)  
  05.10.Gg (Stochastic analysis methods)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/9/098701       OR      https://cpl.iphy.ac.cn/Y2013/V30/I9/098701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yasuomi D. Sato
[1] Lillo F and Mantegna R N 2003 Phys. Rev. E 68 016119
[2] Anderson P W 1972 Science 177 393
Stumpf M P H and Porter M A 2012 Science 335 665
[3] Toib A et al 1998 J. Neurosci. 18 1893
Lowen S B et al 1997 J. Neurosci. 17 5666
Xu Zet al 1996 J. Neurophysiol. 76 2020
[4] Beggs J M and Plenz D 2003 J. Neurosci. 23 11167
[5] Klaus A et al 2011 PLOS ONE 6 e19779
[6] Kinouchi O and Copelli M 2006 Nat. Phys. 2 348
Shew W L et al 2009 J. Neurosci. 29 15595
Shew W L et al 2011 J. Neurosci. 31 55
[7] Larremore D B et al 2011 Phys. Rev. Lett. 106 058101
[8] Bonifazi P et al 2009 Science 326 1419
[9] Ikegaya Y et al 2013 Cereb. Cortex 23 293
[10] Song S et al 2005 PLOS Biol. 3 e68
Sarid Let al 2007 Proc. Natl. Acad. Sci. USA 104 16353
[11] Takahashi N et al 2010 Proc. Natl. Acad. Sci. USA 107 10244
http://gaya. jp/data/
[12] Traub R D and Miles R 1991 Neuronal Networks of the Hippocampus (Cambridge: Cambridge University Press)
[13] Izhikevich E M 2007 Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting (Cambridge: MA: MIT Press)
[14] Li X et al 2010 Biophys. J. 98 1733
[15] Samura T and Hayashi H 2012 Neural Networks 33 236
Naude J et al 2012 PLOS Comput. Biol. 8 e1002349
[16] Vogels T P et al 2011 Science 334 1569
Ernst U and Pawelzik K 2011 Science 334 1507
Related articles from Frontiers Journals
[1] WANG Lei, ZHANG Pu-Ming, LIANG Pei-Ji, QIU Yi-Hong. Effects of Spike Frequency Adaptation on Synchronization Transitions in Electrically Coupled Neuronal Networks with Scale-Free Connectivity[J]. Chin. Phys. Lett., 2014, 31(07): 098701
[2] LIANG Li-Si, ZHANG Ji-Qian, LIU Le-Zhu, WANG Mao-Sheng, WANG Bing-Hong. Effect of Topological Connectivity on Firing Pattern Transitions in Coupled Neurons[J]. Chin. Phys. Lett., 2014, 31(05): 098701
[3] ZHANG Xi, HUANG Hong-Bin, LI Pei-Jun, WU Fang-Ping, WU Wang-Jie, JIANG Min. Propagation of Spiking and Burst-Spiking Synchronous States in a Feed-Forward Neuronal Network[J]. Chin. Phys. Lett., 2012, 29(12): 098701
Viewed
Full text


Abstract