CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
Excellent Glass Forming Ability and Refrigeration Capacity of a Gd55Al20Ni12Co10Mn3 Bulk Metallic Glass |
DING Ding1, WANG Peng1, GUAN Quan1, TANG Mei-Bo2, XIA Lei1** |
1Laboratory for Microstructure, Shanghai University, Shanghai 200072 2Key Laboratory of Transparent and Opto-functional Inorganic Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050
|
|
Cite this article: |
DING Ding, WANG Peng, GUAN Quan et al 2013 Chin. Phys. Lett. 30 096104 |
|
|
Abstract We investigate an excellent refrigeration capacity Rc of Gd55Al20Ni12Co10Mn3 bulk metallic glass (BMG). The Gd55Al20Ni12Co10Mn3 glassy rod is subjected to Cu mold suction-casting to prepare bulky metallic glasses, with a diameter of 3 mm. The glass forming ability as well as the magnetic properties of the BMG is investigated. The BMG exhibits a rather high glass formation ability with critical diameter of about 5.6 mm. The peak value of magnetic entropy change of about 8 J?kg?1K?1 is obtained in this alloy. This BMG alloy also exhibits excellent magnetic refrigerant capacity of about 880 J?kg?1 under the field of 5 T and 35% larger than that of other alloys reported previously, supposed to be closely related to the high effective moment (~7.3μB) of the Gd55Al20Ni12Co10Mn3 BMG.
|
|
Received: 15 April 2013
Published: 21 November 2013
|
|
PACS: |
61.43.Dq
|
(Amorphous semiconductors, metals, and alloys)
|
|
81.05.Kf
|
(Glasses (including metallic glasses))
|
|
75.30.Sg
|
(Magnetocaloric effect, magnetic cooling)
|
|
81.20.-n
|
(Methods of materials synthesis and materials processing)
|
|
|
|
|
[1] Warburg E 1881 Ann. Phys. 249 141 [2] Glanz J 1998 Science 279 2045 [3] Tishin A M and Spichkin Y I 2003 The Magnetocaloric Effect and Its Applications (Bristol: IOP Publishing) [4] Pecharsky V K and Gschneider Jr K A 1999 J. Magn. Magn. Mater. 200 44 [5] Pecharsky V K and Gschneider Jr K A 1997 Phys. Rev. Lett. 78 4494 [6] Provenzano V et al 2004 Nature 429 853 [7] Ryan D et al 2003 Phys. Rev. Lett. 90 117202 [8] Gorsse S et al 2008 Appl. Phys. Lett. 92 122501 [9] Jo C L et al 2006 Chin. Phys. Lett. 23 672 [10] Ding D et al 2008 Chin. Phys. Lett. 25 3414 [11] Du J et al 2008 J. Appl. Phys. 103 023918 [12] Luo Q et al 2006 Appl. Phys. Lett. 89 081914 [13] Luo Q et al 2008 Appl. Phys. Lett. 92 011923 [14] Liu Y et al 2009 Appl. Phys. Lett. 94 112507 [15] Liang L et al 2008 J. Alloys Compd. 457 541 [16] Li S et al 2005 J. Non-Cryst. Solids 351 2568 [17] Si L et al 2002 Appl. Phys. A 75 535 [18] Dong Q Y et al 2009 J. Appl. Phys. 105 053908 [19] Inoue A 2000 Acta Mater. 48 279 [20] Wang W H 2007 Prog. Mater. Sci. 52 540 [21] Liu C T and Lu Z P 2005 Intermetallics 13 415 [22] Atalay S, Gencer H and Kolat V S 2005 J. Non-Cryst. Solids 351 2373 [23] Tegus O, Bruck E, Bushow K H J and Boer F R de 2002 Nature 415 150 [24] Gschneidner Jr K A, Pecharsky V K, Pecharsky A O and Zimm C B 1999 Mater. Sci. Forum 315 69 [25] Du J, Zheng Q, Li Y B, Zhang Q, Li D and Zhang Z D 2008 J. Appl. Phys. 103 023918 [26] Lu S, Tang M B and Xia L 2011 Phys. B 406 3398 [27] Dong Q Y, Shen B G, Chen J, Shen J, Wang F, Zhang H W and Sun J R 2009 J. Appl. Phys. 105 053908 [28] Li Y X, Hu F X, Sun J R and Shen B G 2008 J. Phys. D: Appl. Phys. 41 245005 [29] Provenzano V, Shapiro A J and Shull R D 2004 Nature 429 853 [30] Luo Q, Zhao D Q, Pan M X and Wang W H 2007 Appl. Phys. Lett. 90 211903 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|