Chin. Phys. Lett.  2013, Vol. 30 Issue (9): 090301    DOI: 10.1088/0256-307X/30/9/090301
GENERAL |
A Bidirectional Quantum Secure Direct Communication Protocol Based on Five-Particle Cluster State
CHANG Yan**, ZHANG Shi-Bin, YAN Li-Li
Department of Network Engineering, Chengdu University of Information Technology, Chengdu 610225
Cite this article:   
CHANG Yan, ZHANG Shi-Bin, YAN Li-Li 2013 Chin. Phys. Lett. 30 090301
Download: PDF(408KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract To transmit a message safely, five-particle cluster state particles are used to construct a bidirectional quantum secure direct communication protocol. Five-particle cluster state particles are used for both detecting eavesdroppers and transmitting secret messages. All of the five-particle cluster states' photons for detection are mixed to the sending sequence to detect eavesdroppers. The detection rate approaches 88% per qubit. The five-particle cluster states needed are only one fifth of the photons in the sending sequence. In this protocol, there is no photon carrying secret information transmitting in quantum channel, and the classical XOR operation which serves as a one-time-pad is used to ensure the security of the protocol. Compared with three photons of each five-particle cluster state as detection photons, the five photons in this study will decrease the five-particle cluster states needed for detection greatly.
Received: 07 April 2013      Published: 21 November 2013
PACS:  03.67.Dd (Quantum cryptography and communication security)  
  03.67.Hk (Quantum communication)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/9/090301       OR      https://cpl.iphy.ac.cn/Y2013/V30/I9/090301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CHANG Yan
ZHANG Shi-Bin
YAN Li-Li
[1] Long G L et al 2011 Scientia Sin. Phys. Mech. Astron. 41 332
[2] Bennett C H and Brassard G 1984 Proceedings of IEEE International Conference on Computers, Systems and Signal Processing (Bangalore India 10–12 December 1984) (New York: IEEE) p175
[3] Ekert A K 1991 Phys. Rev. Lett. 67 661
[4] Bennett C H et al 1992 Phys. Rev. Lett. 68 557
[5] Deng F G and Long G L 2003 Phys. Rev. A 68 042315
[6] Li X H et al 2008 Phys. Rev. A 78 022321
[7] Hillery M et al 1999 Phys. Rev. A 59 1829
[8] Karlsson A et al 1999 Phys. Rev. A 59 162
[9] Xiao L et al 2004 Phys. Rev. A 69 052307
[10] Chen P et al 2006 Chin. Phys. B 15 2228
[11] Han L F et al 2007 Chin. Phys. Lett. 24 3312
[12] Hou P et al 2007 Chin. Phys. Lett. 24 2181
[13] Long G L and Liu X S 2002 Phys. Rev. A 65 032302
[14] Deng F G and Long G L 2003 Phys. Rev. A 68 042315
[15] Deng F G et al 2003 Phys. Rev. A 68 042317
[16] Deng F G and Long G L 2004 Phys. Rev. A 69 052319
[17] Yan F L and Zhang X Q 2004 Eur. Phys. J. B 41 75
[18] Wang C et al 2005 Phys. Rev. A 71 044305
[19] Wang C et al 2005 Opt. Commun. 253 15
[20] Li X H et al 2006 J. Korean Phys. Soc. 49 1354
[21] Li X H et al 2007 Chin. Phys. 16 2149
[22] Wang J et al 2006 Opt. Commun. 266 732
[23] Wang J et al 2007 Acta Phys. Sin. 56 673 (in Chinese)
[24] Wang T Y et al 2008 Acta Phys. Sin. 57 7452 (in Chinese)
[25] Gao F et al 2010 Opt. Commun. 283 192
[26] Quan D X et al 2010 Acta Phys. Sin. 59 2493 (in Chinese)
[27] Yang J et al 2010 Chin. Phys. B 19 110311
[28] Guo F Z et al 2010 Chin. Phys. Lett. 27 090307
[29] Wang T J et al 2011 Chin. Phys. Lett. 28 040305
[30] Lin S et al 2011 Chin. Phys. Lett. 28 030302
[31] Gao F et al 2011 Chin. Phys. Lett. 28 020303
[32] Huang W et al 2012 Chin. Phys. B 21 100308
[33] Song S Y and Wang C 2012 Chin. Sci. Bull. 57 4694
[34] Gao F et al 2009 Sci. Chin. G-Phys. Mech. Astron. 39 161
[35] Li J et al 2011 Sci. Chin. Phys. Mech. Astron. 54 1612
[36] Li J et al 2012 Chin. Phys. C 36 31
[37] Li J et al 2012 Chin. Commun. 9 111
[38] Li J et al 2012 Chin. Sci. Bull. 57 4434
[39] P W Shor and J Preskill 2000 Phys. Rev. Lett. 85 441
[40] Wen K et al 2007 arXiv:0706.3791v1 [quant-ph]
Related articles from Frontiers Journals
[1] Yanxin Han, Zhongqi Sun, Tianqi Dou, Jipeng Wang, Zhenhua Li, Yuqing Huang, Pengyun Li, and Haiqiang Ma. Twin-Field Quantum Key Distribution Protocol Based on Wavelength-Division-Multiplexing Technology[J]. Chin. Phys. Lett., 2022, 39(7): 090301
[2] Dian Zhu, Wei-Min Shang, Fu-Lin Zhang, and Jing-Ling Chen. Quantum Cloning of Steering[J]. Chin. Phys. Lett., 2022, 39(7): 090301
[3] Jian Li, Jia-Li Zhu, Jiang Gao, Zhi-Guang Pang, and Qin Wang. Semi-Measurement-Device-Independent Quantum State Tomography[J]. Chin. Phys. Lett., 2022, 39(7): 090301
[4] Luyu Huang , Yichen Zhang, and Song Yu . Continuous-Variable Measurement-Device-Independent Quantum Key Distribution with One-Time Shot-Noise Unit Calibration[J]. Chin. Phys. Lett., 2021, 38(4): 090301
[5] Hao Cao, Wenping Ma, Ge Liu, Liangdong Lü, Zheng-Yuan Xue. Quantum Secure Multiparty Computation with Symmetric Boolean Functions[J]. Chin. Phys. Lett., 2020, 37(5): 090301
[6] Yu Mao, Qi Liu, Ying Guo, Hang Zhang, Jian Zhou. Four-State Modulation in Middle of a Quantum Channel for Continuous-Variable Quantum Key Distribution Protocol with Noiseless Linear Amplifier[J]. Chin. Phys. Lett., 2019, 36(10): 090301
[7] Guang-Zhao Tang, Shi-Hai Sun, Chun-Yan Li. Experimental Point-to-Multipoint Plug-and-Play Measurement-Device-Independent Quantum Key Distribution Network[J]. Chin. Phys. Lett., 2019, 36(7): 090301
[8] Ya-Hui Gan, Yang Wang, Wan-Su Bao, Ru-Shi He, Chun Zhou, Mu-Sheng Jiang. Finite-Key Analysis for a Practical High-Dimensional Quantum Key Distribution System Based on Time-Phase States[J]. Chin. Phys. Lett., 2019, 36(4): 090301
[9] Min Xiao, Di-Fang Zhang. Practical Quantum Private Query with Classical Participants[J]. Chin. Phys. Lett., 2019, 36(3): 090301
[10] Cai-Lang Xie, Ying Guo, Yi-Jun Wang, Duan Huang, Ling Zhang. Security Simulation of Continuous-Variable Quantum Key Distribution over Air-to-Water Channel Using Monte Carlo Method[J]. Chin. Phys. Lett., 2018, 35(9): 090301
[11] Jia-Ji Li, Yang Wang, Hong-Wei Li, Peng Peng, Chun Zhou, Mu-Sheng Jiang, Hong-Xin Ma, Lin-Xi Feng, Wan-Su Bao. Passive Decoy-State Reference-Frame-Independent Quantum Key Distribution with Heralded Single-Photon Source[J]. Chin. Phys. Lett., 2017, 34(12): 090301
[12] Sheng-Kai Liao, Jin Lin, Ji-Gang Ren, Wei-Yue Liu, Jia Qiang, Juan Yin, Yang Li, Qi Shen, Liang Zhang, Xue-Feng Liang, Hai-Lin Yong, Feng-Zhi Li, Ya-Yun Yin, Yuan Cao, Wen-Qi Cai, Wen-Zhuo Zhang, Jian-Jun Jia, Jin-Cai Wu, Xiao-Wen Chen, Shan-Cong Zhang, Xiao-Jun Jiang, Jian-Feng Wang, Yong-Mei Huang, Qiang Wang, Lu Ma, Li Li, Ge-Sheng Pan, Qiang Zhang, Yu-Ao Chen, Chao-Yang Lu, Nai-Le Liu, Xiongfeng Ma, Rong Shu, Cheng-Zhi Peng, Jian-Yu Wang, Jian-Wei Pan. Space-to-Ground Quantum Key Distribution Using a Small-Sized Payload on Tiangong-2 Space Lab[J]. Chin. Phys. Lett., 2017, 34(9): 090301
[13] Rui-Ke Chen, Wan-Su Bao, Hai-Ze Bao, Chun Zhou, Mu-Sheng Jiang, Hong-Wei Li. Asymmetric Decoy State Measurement-Device-Independent Quantum Cryptographic Conferencing[J]. Chin. Phys. Lett., 2017, 34(8): 090301
[14] Ying-Ying Zhang, Wan-Su Bao, Hong-Wei Li, Chun Zhou, Yang Wang, Mu-Sheng Jiang. Application of a Discrete Phase-Randomized Coherent State Source in Round-Robin Differential Phase-Shift Quantum Key Distribution[J]. Chin. Phys. Lett., 2017, 34(8): 090301
[15] Ying-Ying Zhang, Wan-Su Bao, Chun Zhou, Hong-Wei Li, Yang Wang, Mu-Sheng Jiang. Round-Robin Differential Phase Shift with Heralded Single-Photon Source[J]. Chin. Phys. Lett., 2017, 34(4): 090301
Viewed
Full text


Abstract