CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
Brownian Markets |
Roumen Tsekov* |
Department of Physical Chemistry, University of Sofia, 1164 Sofia, Bulgaria
|
|
Cite this article: |
Roumen Tsekov 2013 Chin. Phys. Lett. 30 088901 |
|
|
Abstract Financial market dynamics are rigorously studied via the exact generalized Langevin equation. Assuming market Brownian self-similarity, the market return rate memory and autocorrelation functions are derived, which exhibit an oscillatory-decaying behavior with a long-time tail, similar to empirical observations. Individual stocks are also described via the generalized Langevin equation. They are classified by their relation to the market memory as heavy, neutral and light stocks, possessing different kinds of autocorrelation functions.
|
|
Received: 20 May 2013
Published: 21 November 2013
|
|
PACS: |
89.65.Gh
|
(Economics; econophysics, financial markets, business and management)
|
|
05.40.-a
|
(Fluctuation phenomena, random processes, noise, and Brownian motion)
|
|
05.40.Jc
|
(Brownian motion)
|
|
|
|
|
[1] Bachelier L 1900 Ann. Sci. L'école Normale Suppl. 3e série 17 21 [2] Einstein A 1905 Ann. Phys. (Leipzig) 17 549 [3] Black F and Scholes M 1973 J. Polit. Econ. 81 637 [4] Dana R A and Jeanblanc M 2003 Financial Markets in Continuous Time (Berlin: Springer) [5] Cont R and Tankov P 2004 Financial Modelling with Jump Processes (Boca Raton: CRC) [6] Rostek S 2009 Option Pricing in Fractional Brownian Markets (Berlin: Springer) [7] Mantegna R N and Stanley H E 1999 An Introduction to Econophysics (Cambridge: Cambridge University Press) [8] Voit J 2005 The Statistical Mechanics of Financial Markets (Berlin: Springer) [9] McCauley J L 2009 Dynamics of Markets (Cambridge: Cambridge University Press) [10] Ito K 1951 Nagoya Math. J. 3 55 [11] Stratonovich R L 1966 SIAM J. Control 4 362 [12] Tsekov R 1997 J. Chem. Soc. Faraday Trans. 93 1751 [13] Tsekov R and Radoev B 1991 Commun. Dept. Chem. Bulg. Acad. Sci. 24 576 [14] Tsekov R and Radoev B 1992 J. Phys.: Condens. Matter 4 L303 [15] Lee M H 1992 J. Phys.: Condens. Matter 4 10487 [16] Zwanzig R 1960 J. Chem. Phys. 33 1338 [17] Mori H 1965 Prog. Theor. Phys. 33 423 [18] Doob J L 1942 Ann. Math. 43 351 [19] Takahashi M 1996 Financial Eng. Jpn. Markets 3 87 [20] Tsekov R 2010 arXiv:1005.1490 [cond-mat.stat-mech] [21] Gopikrishnan P, Meyer M, Amaral L A N and Stanley H E 1998 Eur. Phys. J. B 3 139 [22] Gopikrishnan P, Plerou V, Amaral L A N, Meyer M and Stanley H E 1999 Phys. Rev. E 60 5305 [23] Plerou V, Gopikrishnan P, Amaral L A N, Meyer M and Stanley H E 1999 Phys. Rev. E 60 6519 [24] Gu G F, Chen W and Zhou W X 2008 Physica A 387 495 [25] Plerou V and Stanley H E 2008 Phys. Rev. E 77 037101 [26] Mu G H and Zhou W X 2010 Phys. Rev. E 82 066103 [27] Zhou W X 2012 Quant. Finance 12 1253 [28] Rubin R J 1960 J. Math. Phys. 1 309 Rubin R J 1963 Phys. Rev. 131 964 [29] Sznajd-Weron K and Weron R 2002 Int. J. Mod. Phys. C 13 115 [30] Voit J 2003 Physica A 321 286 [31] Rachev S T, Mittnik S, Fabozzi F J, Focardi S M and Ja?i? T 2007 Financial Econometrics: From Basics to Advanced Modeling Techniques (Hoboken: Wiley) [32] Frank T D 2005 Nonlinear Fokker-Planck Equations (Berlin: Springer) [33] Pechukas P 1967 Phys. Rev. 164 174 [34] Baaquie B E 2004 Quantum Finance (Cambridge: Cambridge University Press) [35] Tsekov R 2007 J. Phys. A: Math. Theor. 40 10945 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|