CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Characterization of HfSiAlON/MoAlN PMOSFETs Fabricated by Using a Novel Gate-Last Process |
XU Gao-Bo**, XU Qiu-Xia, YIN Hua-Xiang, ZHOU Hua-Jie, YANG Tao, NIU Jie-Bin, HE Xiao-Bin, MENG Ling-Kuan, YU Jia-Han, LI Jun-Feng, YAN Jiang, ZHAO Chao, CHEN Da-Peng |
Key Laboratory of Microelectronics Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029
|
|
Cite this article: |
XU Gao-Bo, XU Qiu-Xia, YIN Hua-Xiang et al 2013 Chin. Phys. Lett. 30 087303 |
|
|
Abstract We fabricate p-channel metal-oxide-semiconductor-field-effect-transistors (PMOSFETs) with a HfSiAlON/MoAlN gate stack using a novel and practical gate-last process. In the process, SiO2/poly-Si is adopted as the dummy gate stack and replaced by an HfSiAlON/MoAlN gate stack after source/drain formation. Because of the high-k/metal-gate stack formation after the 1000°C source/drain ion-implant doping activation, the fabricated PMOSFET has good electrical characteristics. The device's saturation driving current is 2.71×10?4 A/μm (VGS=VDS=?1.5 V) and the off-state current is 2.78×10?9 A/μm. The subthreshold slope of 105 mV/dec (VDS=?1.5 V), drain induced barrier lowering of 80 mV/V and Vth of ?0.3 V are obtained. The research indicates that the present PMOSFET could be a solution for high performance PMOSFET applications.
|
|
Received: 20 May 2013
Published: 21 November 2013
|
|
PACS: |
73.40.Qv
|
(Metal-insulator-semiconductor structures (including semiconductor-to-insulator))
|
|
73.61.-r
|
(Electrical properties of specific thin films)
|
|
73.90.+f
|
(Other topics in electronic structure and electrical properties of surfaces, interfaces, thin films, and low-dimensional structures)
|
|
|
|
|
[1] Robertson J 2004 Eur. Phys. J. Appl. Phys. 28 265[2] Wilk G D, Wallace R M and Anthony J M 2001 J. Appl. Phys. 89 5243[3] Li R Z and Xu Q X 2002 IEEE Trans. Electron Devices 49 1891[4] Nara Y, Mise N, Kadoshima M, Morooka T, Kamiyama S, Matsuki T, Sato M, Ono T, Aoyama T, Eimori T and Ohji Y 2008 ECS Trans. 13 209[5] Liu G Z, Li C, Lu C B, Tang R F, Tang M R, Wu Z, Yang X, Huang W, Lai H K and Chen S Y 2012 Chin. Phys. B 21 117701[6] Oh J H, Park Y, An K S, Kim Y, Ahn J R, Baik J Y and Park C Y 2005 Appl. Phys. Lett. 86 262906[7] Li H J and Gardner M I 2005 IEEE Electron Device Lett. 26 441[8] Alshareef H N, Luan H F, Choi K, Harris H R, Wen H C, Quevedo-Lopez M A, Majhi P and Lee B H 2006 Appl. Phys. Lett. 88 112114[9] Fan J B, Liu H X, Ma F, Zhuo Q Q and Hao Y 2013 Chin. Phys. B 22 027702[10] Hu A B and Xu Q X 2010 Chin. Phys. B 19 057302[11] Wang X G, Liu J, Zhu F, Yamada N and Kwong D L 2004 IEEE Trans. Electron Devices 51 1798[12] Xu Q X, Duan X F, Liu H H, Han Z S and Chu Y T 2007 IEEE Trans. Electron Devices 54 1394[13] Yin H X, Meng L K, Yang T, Xu G B, Xu Q X, Zhao C and Chen D P 2011 ECS Trans. 34 749[14] Li Y L and Xu Q X 2011 Microelectron. Eng. 88 976[15] Kakushima K, Okamoto K, Adachi M, Tachi K, Ahmet P, Tsutsui K, Sugii N, Hattori T and Iwai H 2008 Solid-State Electron. 52 1280[16] Kita K and Toriomi A 2009 Appl. Phys. Lett. 94 132902[17] Wang X L, Han K, Wang W W, Chen S J, Ma X L, Chen D P, Zhang J, Du J, Xiong Y and Huang A P 2010 Appl. Phys. Lett. 96 152907[18] Yang Z C, Huang A P, Yan L, Xiao Z S, Zhang X W, Chu P K and Wang W W 2009 Appl. Phys. Lett. 94 252905[19] Xu G B and Xu Q X 2009 Chin. Phys. B 18 768[20] Zhou H J and Xu Q X 2007 Chin. J. Semicond. 28 1532 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|