Chin. Phys. Lett.  2013, Vol. 30 Issue (8): 087202    DOI: 10.1088/0256-307X/30/8/087202
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Magneto-Conductance in Tri-(8-Hydroxyquinoline) Aluminum-Based Organic Light Emitting Diodes
XU Kai1,2, YANG De-Zhi1, MA Dong-Ge1**
1State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022
2Graduate University of the Chinese Academy of Sciences, Beijing 100049
Cite this article:   
XU Kai, YANG De-Zhi, MA Dong-Ge 2013 Chin. Phys. Lett. 30 087202
Download: PDF(557KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The origin of magneto-conductance (MC) in tri-(8-hydroxyquinoline)-aluminum (Alq3)-based organic light emitting diodes is investigated. Our results clearly show that the generated MC is related to the singlet polaron pair dissociation. Further studies on the MC in an electron blocking layer N,N'-bis(lnaphthyl)-N,N'-diphenyl-l,l'-biphentl-4,4'-diamine (NPB) and a hole blocking layer 2,2',2"-(1,3,5-Benzinetriyl)-tris(1-phenyl-1-H-benzimidazole (TPBi)-based devices indicate that the holes reaching the cathode from the dissociation of singlet polaron pairs on Alq3 are the main cause of the MC generation. It is found that the MC can be significantly reduced by doping a red fluorescence dye DCJTB as a hole trapper in Alq3.
Received: 22 April 2013      Published: 21 November 2013
PACS:  72.80.Le (Polymers; organic compounds (including organic semiconductors))  
  84.37.+q (Measurements in electric variables (including voltage, current, resistance, capacitance, inductance, impedance, and admittance, etc.))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/8/087202       OR      https://cpl.iphy.ac.cn/Y2013/V30/I8/087202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
XU Kai
YANG De-Zhi
MA Dong-Ge
[1] Nguyen T, Sheng Y, Rybicki J and Wohlgenannt M 2008 Phys. Rev. B 77 235209
[2] Desai P, Shakya P, Kreouzis T and Gillin W P 2007 J. Appl. Phys. 102 073710
[3] Kalinowski J, Szmytkowski J D and Stampor W 2003 Chem. Phys. Lett. 378 380
[4] Hu B and Wu B 2007 Nat. Mater. 6 985
[5] Desai P, Shakya P, Kreouzis T, Gillin W, Morley N and Gibbs M 2007 Phys. Rev. B 75 094423
[6] Bobbert P, Nguyen T, van Oost F, Koopmans B and Wohlgenannt M 2007 Phys. Rev. Lett. 99 216801
[7] Dhakal P, Yoshino H, Oh J I I, Kikuchi K and Naughton M J 2010 Phys. Rev. Lett. 105 067201
[8] Bloom F, Wagemans W, Kemerink M and Koopmans B 2007 Phys. Rev. Lett. 99 257201
[9] Song J Y, Stingelin N, Gillin W P and Kreouzis T 2008 Appl. Phys. Lett. 93 233306
[10] Liu R, Zhang Y, Lei Y L, Chen P and Xiong Z H 2009 J. Appl. Phys. 105 093719
[11] Li F, Xin L Y, Liu S Y and Hu B 2010 Appl. Phys. Lett. 97 073301
[12] Shao M, Yan L, Li M X, Ilia I and Hu B 2013 J. Mater. Chem. C 1 1330
[13] Nguyen T, Gautam B, Ehrenfreund E and Vardeny Z 2010 Phys. Rev. Lett. 105 166801
[14] Li B K, Chen W J, Lam M K, Cheah K W and Wang J N 2009 16th International Conference on Electron Dynamics in Semiconductors, Optoelectronics and Nanostructures 16th edn vol 193 p 012109
[15] Rothe C, Attar H A and Monkman A 2005 Phys. Rev. B 72 155330
[16] Kang H Y, Kang G W, Park K M, Yoo I S and Lee C H 2004 Mater. Sci. Eng. C 24 229
Related articles from Frontiers Journals
[1] Sai Jiang, Lichao Peng, Xiaosong Du, Qinyong Dai, Jianhang Guo, Jianhui Gu, Jian Su, Ding Gu, Qijing Wang, Huafei Guo, Jianhua Qiu, and Yun Li. Large-Area Monolayer n-Type Molecular Semiconductors with Improved Thermal Stability and Charge Injection[J]. Chin. Phys. Lett., 2023, 40(3): 087202
[2] Yanjing Tang, Xianxi Yu, Shaobo Liu, Anran Yu, Jiajun Qin, Ruichen Yi, Yuan Pei, Chunqin Zhu, Xiaoyuan Hou. Hole Injection Enhancement of MoO$_{3}$/NPB/Al Composite Anode[J]. Chin. Phys. Lett., 2019, 36(12): 087202
[3] Ning-Ning Chen, Wan-Yi Tan, Dong-Yu Gao, Jian-Hua Zou, Jun-Zhe Liu, Jun-Biao Peng, Yong Cao, Xu-Hui Zhu. BiPh-$m$-BiDPO as a Hole-Blocking Layer for Organic Light-Emitting Diodes: Revealing Molecular Structure-Properties Relationship[J]. Chin. Phys. Lett., 2017, 34(7): 087202
[4] Rong-Hui Quan, Kai Zhou, Mei-Hua Fang, Wei-Ying Chi, Zhen-Long Zhang. Fast Measurement of Dielectric Conductivity for Space Application by Surface Potential Decay Method[J]. Chin. Phys. Lett., 2017, 34(6): 087202
[5] Min-Nan Guo, Shao-Wei Liu, Na Guo, Li-Ying Yang, Wen-Jing Qin, Shou-Gen Yin. Performance and Stability of Polymer Solar Cells Based on the Blends of Poly(3-Hexylthiophene) and Indene-C$_{60}$ Bis-Adduct[J]. Chin. Phys. Lett., 2016, 33(07): 087202
[6] Yuan-Yuan Hou, Jiang-Hong Li, Xiao-Xiang Ji, Ya-Feng Wu, Wei Fan, Igbari Femi. Highly Efficient and Stable Hybrid White Organic Light Emitting Diodes with Controllable Exciton Behavior by a Mixed Bipolar Interlayer[J]. Chin. Phys. Lett., 2016, 33(07): 087202
[7] Shuang Cheng, Jian-Qi Shen, Zhi-Qi Kou, Xiao-Ping Wang. Influence of Blocking Interlayer in Blue Organic Light-Emitting Diodes with Different Thicknesses of Emitting Layer and Interlayer[J]. Chin. Phys. Lett., 2016, 33(02): 087202
[8] JIAO Bo, YAO Li-Juan, WU Chun-Fang, DONG Hua, HOU Xun, WU Zhao-Xin. Room-Temperature Organic Negative Differential Resistance Device Using CdSe Quantum Dots as the ITO Modification Layer[J]. Chin. Phys. Lett., 2015, 32(11): 087202
[9] DING Lei, LI Huai-Kun, ZHANG Mai-Li, CHENG Jun, ZHANG Fang-Hui. High-Performance Hybrid White Organic Light-Emitting Diodes Utilizing a Mixed Interlayer as the Universal Carrier Switch[J]. Chin. Phys. Lett., 2015, 32(10): 087202
[10] ZHANG Hong-Mei, WANG Dan-Bei, WU Yuan-Wu, FANG Da, HUANG Wei. High-Efficiency Bottom-Emitting Organic Light-Emitting Diodes with Double Aluminum as Electrodes[J]. Chin. Phys. Lett., 2015, 32(10): 087202
[11] MU Ye, ZHANG Zhen-Song, WANG Hong-Bo, QU Da-Long, WU Yu-Kun, YAN Ping-Rui, LI Chuan-Nan, ZHAO Yi. Top-Emitting White Organic Light-Emitting Diodes Based on Cu as Both Anode and Cathode[J]. Chin. Phys. Lett., 2015, 32(09): 087202
[12] ZHANG Hong-Mei, WANG Dan-Bei, ZENG Wen-Jin, YAN Min-Nan. High-Efficiency Green Phosphorescent Organic Light-Emitting Diode Based on Simplified Device Structures[J]. Chin. Phys. Lett., 2015, 32(09): 087202
[13] XIANG Lan-Yi, YING Jun, HAN Jin-Hua, WANG Wei, XIE Wen-Fa. Solution-Processed High Mobility Top-Gate N-Channel Polymer Field-Effect Transistors[J]. Chin. Phys. Lett., 2015, 32(09): 087202
[14] ZHANG Wen-Wen, WU Zhao-Xin, LIU Ying-Wen, DONG Jun, YAN Xue-Wen, HOU Xun. Thermal Analysis of Organic Light Emitting Diodes Based on Basic Heat Transfer Theory[J]. Chin. Phys. Lett., 2015, 32(08): 087202
[15] ZHANG Ruo-Chuan, WANG Meng-Ying, YANG Li-Ying, QIN Wen-Jing, YIN Shou-Gen. Polymer Solar Cells Using a PEDOT:PSS/Cu Nanowires/PEDOT:PSS Multilayer as the Anode Interlayer[J]. Chin. Phys. Lett., 2015, 32(07): 087202
Viewed
Full text


Abstract