Chin. Phys. Lett.  2013, Vol. 30 Issue (8): 086201    DOI: 10.1088/0256-307X/30/8/086201
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
A Novel Fabrication Method for Flexible SOI Substrate Based on Trench Refilling with Polydimethylsiloxane
ZHANG Cang-Hai, YANG Yi, WANG Yu-Feng, ZHOU Chang-Jian, SHU Yi, TIAN He, REN Tian-Ling**
Institute of Microelectronics, Tsinghua University, Beijing 100084 Tsinghua National Laboratory for Information Science and Technology, Tsinghua University, Beijing 100084
Cite this article:   
ZHANG Cang-Hai, YANG Yi, WANG Yu-Feng et al  2013 Chin. Phys. Lett. 30 086201
Download: PDF(643KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Flexible arrays based on the flexible connection of double layers are demonstrated. Flexible sensor arrays are highly desired for many applications. Conventional flexible electronics are implemented by directly fabricating them on organic flexible substrates such as polyimide or polyethylene terephthalate, or forming on rigid substrates and then transferring them onto elastomeric substrates. For the first time, a novel process method based on trench refilling with polydimethylsiloxane to make flexible arrays is proposed. In this method, the sensors are directly fabricated on islands of the final bulk silicon. The performance of the sensor will not to be effected by bending and stretching operations. A one-dimensional flexible array shows good flexibility. Since the flexibility process is the last fabrication step, this method is compatible with many micro-electro-mechanical system fabrication technologies and has good yield.
Received: 15 April 2013      Published: 21 November 2013
PACS:  62.20.D- (Elasticity)  
  62.20.M- (Structural failure of materials)  
  61.90.+d (Other topics in structure of solids and liquids; crystallography)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/8/086201       OR      https://cpl.iphy.ac.cn/Y2013/V30/I8/086201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Cang-Hai
YANG Yi
WANG Yu-Feng
ZHOU Chang-Jian
SHU Yi
TIAN He
REN Tian-Ling
[1] Shin K H et al 2005 Sens. Actuators A 123-124 30
[2] Saito H et al 2005 18th IEEE International Conference on Micro Electro Mechanical Systems (IEEE Cat. No. 05CH37610) p 96
[3] Xuefeng Z, Der-Song L, Oralkan O and Butrus T K Y 2008 J. Microelectromech. Syst. 17 446
[4] Duchaine V et al 2009 IEEE Int. Conf. Robotics Automation (Kobe Japan 12–17 May 2009) p 2625
[5] Someya T, Sekitani T 2009 Procedia Chem. 1 9
[6] Sankaralingam S and Gupta B 2012 Microwave Opt. Technol. Lett. 54 1508
[7] Wang Y F et al 2011 Tsinghua Sci. Technol. 16 290
[8] Zhou Y B et al 2011 Tsinghua Sci. Technol. 16 157
[9] Zhang L et al 2009 Chin. Phys. Lett. 26 026801
[10] Wang P et al 2003 Tsinghua Sci. Technol. 11 1480
[11] Sekitani T and Someya T 2010 Adv. Mater. 22 2228
[12] Wang H et al 2010 Chin. Phys. Lett. 27 028502
[13] Wang H et al 2009 Chin. Phys. Lett. 26 118501
[14] Meitl M A et al 2006 Nat. Mater. 5 33
[15] Khang D Y et al 2006 Science 311 208
[16] Kim D H et al 2008 Proc. Natl. Acad. Sci. USA 105 18675
[17] Song J et al 2009 J. Appl. Phys. 105 123516
[18] Ahn B Y et al 2009 Science 323 1590
[19] Ericson F, Johansson S and Schweitz J A 1988 Mater. Sci. Eng. A 105-106 131
[20] Petersen K E 1982 Proc. IEEE 70 420
Related articles from Frontiers Journals
[1] Wang-Min Zhou, Wang-Jun Li. Instability of Epitaxially Strained Thin Films Based on Nonlocal Elasticity[J]. Chin. Phys. Lett., 2019, 36(1): 086201
[2] Yong-Hua Zhang, S. Karthikeyan, Jian Zhang. Polymer-Sandwich Ultra-Thin Silicon(100) Platform for Flexible Electronics[J]. Chin. Phys. Lett., 2016, 33(06): 086201
[3] Jing-He Wu, Chang-Xin Liu. Ground-State Structure and Physical Properties of NB$_{2}$ Predicted from First Principles[J]. Chin. Phys. Lett., 2016, 33(03): 086201
[4] LIU Yun-Fang, CHENG Lai-Fei, ZENG Qing-Feng, ZHANG Li-Tong. Effects of N on Electronic and Mechanical Properties of H-Type SiC[J]. Chin. Phys. Lett., 2015, 32(08): 086201
[5] K. Ephraim Babu, N. Murali, K. Vijaya Babu, B. Kishore Babu, V. Veeraiah. Elastic and Optoelectronic Properties of KCdF3: ab initio Calculations through LDA/GGA/TB-mBJ within FP-LAPW Method[J]. Chin. Phys. Lett., 2015, 32(01): 086201
[6] YU You, CHEN Chun-Lin, ZHAO Guo-Dong, ZHENG Xiao-Lin, ZHU Xing-Hua. Mechanical and Vibrational Properties of ZnS with Wurtzite Structure: A First-Principles Study[J]. Chin. Phys. Lett., 2014, 31(10): 086201
[7] FANG Ming-Lei, XU Feng, WEI Wen-Hou, YANG Zhi-Yong. Structural and Physical Properties of AsxSe100?x Glasses[J]. Chin. Phys. Lett., 2014, 31(06): 086201
[8] WANG Ai-Kun, WANG Shi-Guang, XUE Rong-Jie, LIU Guo-Cai, ZHAO Kun. Correlation between Atomic Size Ratio and Poisson's Ratio in Metallic Glasses[J]. Chin. Phys. Lett., 2014, 31(06): 086201
[9] QI Chen-Jin, FENG Jing, ZHOU Rong-Feng, JIANG Ye-Hua, ZHOU Rong. First Principles Study on the Stability and Mechanical Properties of MB (M=V, Nb and Ta) Compounds[J]. Chin. Phys. Lett., 2013, 30(11): 086201
[10] M. Güler, E. Güler. Embedded Atom Method-Based Geometry Optimization Aspects of Body-Centered Cubic Metals[J]. Chin. Phys. Lett., 2013, 30(5): 086201
[11] GU Fang, ZHANG Jia-Hong**, XU Lin-Hua, LIU Qing-Quan, LI Min . Influence of Surface Effects on the Elastic Properties of Silicon Nanowires with Different Cross Sections[J]. Chin. Phys. Lett., 2011, 28(10): 086201
[12] DU Yu-Lei. Electronic Structure and Elastic Properties of Ti3AlC from First-Principles Calculations[J]. Chin. Phys. Lett., 2009, 26(11): 086201
[13] WANG Ting, CUI Zhan-Zhong, XU Li-Xin. Thermoelastic Stress Field Investigation of GaN Material for Laser Lift-off Technique based on Finite Element Method[J]. Chin. Phys. Lett., 2009, 26(9): 086201
Viewed
Full text


Abstract