Chin. Phys. Lett.  2013, Vol. 30 Issue (8): 080201    DOI: 10.1088/0256-307X/30/8/080201
GENERAL |
The Hamiltonian Structures of μ-Equations Related to Periodic Peakons
FU Wei**, ZHANG Da-Jun
Department of Mathematics, Shanghai University, Shanghai 200444
Cite this article:   
FU Wei, ZHANG Da-Jun 2013 Chin. Phys. Lett. 30 080201
Download: PDF(422KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The hierarchies of the μ-Camassa–Holm, two-component μ-Camassa–Holm and μ-modified Camassa–Holm equations are constructed from bi-Hamiltonian structures of the Korteweg-de Vries equation, the Ito equation and the modified Korteweg-de Vries equation. The key Hamiltonian operator that includes μ is ?x μ??3x, and the inner product used to define the Jacobi identity of the Hamiltonian operators is defined on the unit circle S1.
Received: 17 April 2013      Published: 21 November 2013
PACS:  02.30.Ik (Integrable systems)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/8/080201       OR      https://cpl.iphy.ac.cn/Y2013/V30/I8/080201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
FU Wei
ZHANG Da-Jun
[1] Khesin B, Lenells J and Misio?ek G 2008 Math. Ann. 342 617
[2] Lenells J, Misio? ek G and Ti?lay F 2010 Commun. Math. Phys. 299 129
[3] Chen R M, Lenells J and Liu Y 2013 J. Nonlinear Sci. 23 97
[4] Fu Y, Liu Y and Qu C Z 2012 J. Funct. Anal. 262 3125
[5] Fuchssteiner B and Fokas A S 1981 Physica D 4 47
[6] Fokas A S 1995 Physica D 87 145
[7] Fuchssteiner B 1996 Physica D 95 229
[8] Olver P J and Rosenau P 1996 Phys. Rev. E 53 1900
[9] Zuo D 2010 Inverse Probl. 26 085003
[10] Qu C Z, Fu Y and Liu Y 2013 Commun. Math. Phys. (accepted)
[11] Camassa R and Holm D D 1993 Phys. Rev. Lett. 71 1661
[12] Magri F 1978 J. Math. Phys. 19 1156
[13] Ito M 1982 Phys. Lett. A 91 335
Related articles from Frontiers Journals
[1] S. Y. Lou, Man Jia, and Xia-Zhi Hao. Higher Dimensional Camassa–Holm Equations[J]. Chin. Phys. Lett., 2023, 40(2): 080201
[2] Wen-Xiu Ma. Matrix Integrable Fourth-Order Nonlinear Schr?dinger Equations and Their Exact Soliton Solutions[J]. Chin. Phys. Lett., 2022, 39(10): 080201
[3] Chong Liu, Shao-Chun Chen, Xiankun Yao, and Nail Akhmediev. Modulation Instability and Non-Degenerate Akhmediev Breathers of Manakov Equations[J]. Chin. Phys. Lett., 2022, 39(9): 080201
[4] Xiao-Man Zhang, Yan-Hong Qin, Li-Ming Ling, and Li-Chen Zhao. Inelastic Interaction of Double-Valley Dark Solitons for the Hirota Equation[J]. Chin. Phys. Lett., 2021, 38(9): 080201
[5] Kai-Hua Yin, Xue-Ping Cheng, and Ji Lin. Soliton Molecule and Breather-Soliton Molecule Structures for a General Sixth-Order Nonlinear Equation[J]. Chin. Phys. Lett., 2021, 38(8): 080201
[6] Yusong Cao and Junpeng Cao. Exact Solution of a Non-Hermitian Generalized Rabi Model[J]. Chin. Phys. Lett., 2021, 38(8): 080201
[7] Zequn Qi , Zhao Zhang , and Biao Li. Space-Curved Resonant Line Solitons in a Generalized $(2+1)$-Dimensional Fifth-Order KdV System[J]. Chin. Phys. Lett., 2021, 38(6): 080201
[8] Wei Wang, Ruoxia Yao, and Senyue Lou. Abundant Traveling Wave Structures of (1+1)-Dimensional Sawada–Kotera Equation: Few Cycle Solitons and Soliton Molecules[J]. Chin. Phys. Lett., 2020, 37(10): 080201
[9] Li-Chen Zhao, Yan-Hong Qin, Wen-Long Wang, Zhan-Ying Yang. A Direct Derivation of the Dark Soliton Excitation Energy[J]. Chin. Phys. Lett., 2020, 37(5): 080201
[10] Danda Zhang, Da-Jun Zhang, Sen-Yue Lou. Lax Pairs of Integrable Systems in Bidifferential Graded Algebras[J]. Chin. Phys. Lett., 2020, 37(4): 080201
[11] Yu-Han Wu, Chong Liu, Zhan-Ying Yang, Wen-Li Yang. Breather Interaction Properties Induced by Self-Steepening and Space-Time Correction[J]. Chin. Phys. Lett., 2020, 37(4): 080201
[12] Bao Wang, Zhao Zhang, Biao Li. Soliton Molecules and Some Hybrid Solutions for the Nonlinear Schr?dinger Equation[J]. Chin. Phys. Lett., 2020, 37(3): 080201
[13] Zhao Zhang, Shu-Xin Yang, Biao Li. Soliton Molecules, Asymmetric Solitons and Hybrid Solutions for (2+1)-Dimensional Fifth-Order KdV Equation[J]. Chin. Phys. Lett., 2019, 36(12): 080201
[14] Zhou-Zheng Kang, Tie-Cheng Xia. Construction of Multi-soliton Solutions of the $N$-Coupled Hirota Equations in an Optical Fiber[J]. Chin. Phys. Lett., 2019, 36(11): 080201
[15] Yong-Shuai Zhang, Jing-Song He. Bound-State Soliton Solutions of the Nonlinear Schr?dinger Equation and Their Asymmetric Decompositions[J]. Chin. Phys. Lett., 2019, 36(3): 080201
Viewed
Full text


Abstract