Chin. Phys. Lett.  2013, Vol. 30 Issue (6): 067402    DOI: 10.1088/0256-307X/30/6/067402
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Doping Evolution of Nodal Band Renormalization in Bi2Sr2CuO6 Superconductor Revealed by Laser-Based Angle-Resolved Photoemission Spectroscopy
PENG Ying-Ying1, MENG Jian-Qiao1, ZHAO Lin1, LIU Yan1, HE Jun-Feng1, LIU Guo-Dong1, DONG Xiao-Li1, HE Shao-Long1, ZHANG Jun1, CHEN Chuang-Tian2, XU Zu-Yan2, ZHOU Xing-Jiang1**
1National Laboratory for Superconductivity, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190
2Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190
Cite this article:   
PENG Ying-Ying, MENG Jian-Qiao, ZHAO Lin et al  2013 Chin. Phys. Lett. 30 067402
Download: PDF(919KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract High resolution laser-based angle-resolved photoemission measurements are carried out on Bi2Sr2CuO6 superconductor covering a wide doping range from heavily underdoped to heavily overdoped samples. Two obvious energy scales are identified in the nodal dispersions: one is the well-known 50–80 meV high energy kink and the other is <10 meV low energy kink. The high energy kink increases monotonously in its energy scale with increasing doping and shows weak temperature dependence, while the low energy kink exhibits a non-monotonic doping dependence with its coupling strength enhanced sharply below Tc. These systematic investigations on the doping and temperature dependence of these two energy scales favor electron-phonon interactions as their origin. They point to the importance in involving the electron-phonon coupling in understanding the physical properties and the superconductivity mechanism of high temperature cuprate superconductors.
Received: 06 May 2013      Published: 31 May 2013
PACS:  74.25.Jb (Electronic structure (photoemission, etc.))  
  74.72.Gh (Hole-doped)  
  79.60.-i (Photoemission and photoelectron spectra)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/6/067402       OR      https://cpl.iphy.ac.cn/Y2013/V30/I6/067402
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
PENG Ying-Ying
MENG Jian-Qiao
ZHAO Lin
LIU Yan
HE Jun-Feng
LIU Guo-Dong
DONG Xiao-Li
HE Shao-Long
ZHANG Jun
CHEN Chuang-Tian
XU Zu-Yan
ZHOU Xing-Jiang
[1] Damascelli A, Hussain Z and Shen Z X 2003 Rev. Mod. Phys. 75 473
Campuzano J C et al 2004 The Physics of Superconductors ed Bennemann K H and Ketterson J B (Berlin: Springer) vol 2
Zhou X J et al 2007 Handbook of High-Temperature Superconductivity: Theory and Experiment ed Schrieffer J R (Berlin: Springer)
[2] Bogdanov P V et al 2000 Phys. Rev. Lett. 85 2581
[3] Johnson P D et al 2001 Phys. Rev. Lett. 87 177007
[4] Kaminski A et al 2001 Phys. Rev. Lett. 86 1070
[5] Lanzara A et al 2001 Nature 412 510
[6] Zhou X J et al 2003 Nature 423 398
[7] Zhou X J et al 2005 Phys. Rev. Lett. 95 117001
[8] Kordyuk A A et al 2006 Phys. Rev. Lett. 97 017002
[9] Meevasana W et al 2006 Phys. Rev. Lett. 96 157003
[10] Zhang W T et al 2008 Phys. Rev. Lett. 100 107002
[11] He J F et al 2012 arXiv:1210.0710
[12] Gromko A D et al 2003 Phys. Rev. B 68 174520
[13] Kim T K et al 2003 Phys. Rev. Lett. 91 167002
[14] Cuk T et al 2004 Phys. Rev. Lett. 93 117003
[15] Rameau J D et al 2009 Phys. Rev. B 80 184513
[16] Vishik I M et al 2010 Phys. Rev. Lett. 104 207002
[17] Plumb N C et al 2010 Phys. Rev. Lett. 105 046402
[18] Anzai H et al 2010 Phys. Rev. Lett. 105 227002
[19] Kondo T et al 2012 arXiv:1212.0335
[20] Johnston S et al 2012 Phys. Rev. Lett. 108 166404
[21] Liu G D et al 2008 Rev. Sci. Instrum. 79 023105
[22] Meng J Q et al 2009 Supercond. Sci. Technol. 22 045010
[23] Peng Y Y et al 2013 arXiv:1302.3017
[24] Zhao L et al 2010 Chin. Phys. Lett. 27 087401
[25] Presland M R et al 1991 Physica C 176 95
[26] Norman M R et al 1998 Phys. Rev. B 57 R11093
[27] He H et al 2001 Phys. Rev. Lett. 86 1610
Wakimoto S et al 2007 Phys. Rev. Lett. 98 247003
[28] Sugai S et al 2003 Phys. Rev. B 68 184504
[29] Sandvik A W et al 2004 Phys. Rev. B 69 094523
[30] Meng J Q et al 2009 Phys. Rev. B 79 024514
Related articles from Frontiers Journals
[1] Wenjing Liu, Heming Zha, Gen-Da Gu, Xiaoping Shen, Mao Ye, and Shan Qiao. Anisotropy of Electronic Spin Texture in the High-Temperature Cuprate Superconductor Bi$_{2}$Sr$_{2}$CaCu$_{2}$O$_{8+\delta}$[J]. Chin. Phys. Lett., 2023, 40(3): 067402
[2] Yuan Wang, Yixuan Liu, Zhanyang Hao, Wenjing Cheng, Junze Deng, Yuxin Wang, Yuhao Gu, Xiao-Ming Ma, Hongtao Rong, Fayuan Zhang, Shu Guo, Chengcheng Zhang, Zhicheng Jiang, Yichen Yang, Wanling Liu, Qi Jiang, Zhengtai Liu, Mao Ye, Dawei Shen, Yi Liu, Shengtao Cui, Le Wang, Cai Liu, Junhao Lin, Ying Liu, Yongqing Cai, Jinlong Zhu, Chaoyu Chen, and Jia-Wei Mei. Flat Band and $\mathbb{Z}_2$ Topology of Kagome Metal CsTi$_{3}$Bi$_{5}$[J]. Chin. Phys. Lett., 2023, 40(3): 067402
[3] Fazhi Yang, Giao Ngoc Phan, Renjie Zhang, Jin Zhao, Jiajun Li, Zouyouwei Lu, John Schneeloch, Ruidan Zhong, Mingwei Ma, Genda Gu, Xiaoli Dong, Tian Qian, and Hong Ding. Fe$_{1+y}$Te$_{x}$Se$_{1-x}$: A Delicate and Tunable Majorana Material[J]. Chin. Phys. Lett., 2023, 40(1): 067402
[4] Yuanyuan Yang, Qisi Wang, Shaofeng Duan, Hongliang Wo, Chaozhi Huang, Shichong Wang, Lingxiao Gu, Dong Qian, Jun Zhao, and Wentao Zhang. Unusual Band Splitting and Superconducting Gap Evolution with Sulfur Substitution in FeSe[J]. Chin. Phys. Lett., 2022, 39(5): 067402
[5] Yi Zhao, Jun Deng, A. Bhattacharyya, D. T. Adroja, P. K. Biswas, Lingling Gao, Weizheng Cao, Changhua Li, Cuiying Pei, Tianping Ying, Hideo Hosono, and Yanpeng Qi. Superconductivity in the Layered Cage Compound Ba$_{3}$Rh$_{4}$Ge$_{16}$[J]. Chin. Phys. Lett., 2021, 38(12): 067402
[6] Jiao-Jiao Song, Yang Luo, Chen Zhang, Qi-Yi Wu, Tomasz Durakiewicz, Yasmine Sassa, Oscar Tjernberg, Martin Månsson, Magnus H. Berntsen, Yin-Zou Zhao, Hao Liu, Shuang-Xing Zhu, Zi-Teng Liu, Fan-Ying Wu, Shu-Yu Liu, Eric D. Bauer, Ján Rusz, Peter M. Oppeneer, Ya-Hua Yuan, Yu-Xia Duan, and Jian-Qiao Meng. The 4$f$-Hybridization Strength in Ce$_m$$M$$_n$In$_{3m+2n}$ Heavy-Fermion Compounds Studied by Angle-Resolved Photoemission Spectroscopy[J]. Chin. Phys. Lett., 2021, 38(10): 067402
[7] Zhe Huang, Xianbiao Shi, Gaoning Zhang, Zhengtai Liu, Soohyun Cho, Zhicheng Jiang, Zhonghao Liu, Jishan Liu, Yichen Yang, Wei Xia, Weiwei Zhao, Yanfeng Guo, and Dawei Shen. Photoemission Spectroscopic Evidence of Multiple Dirac Cones in Superconducting BaSn$_3$[J]. Chin. Phys. Lett., 2021, 38(10): 067402
[8] Xuedong Xie, Dongjing Lin, Li Zhu, Qiyuan Li, Junyu Zong, Wang Chen, Qinghao Meng, Qichao Tian, Shao-Chun Li, Xiaoxiang Xi, Can Wang, and Yi Zhang. Charge Density Wave and Electron-Phonon Interaction in Epitaxial Monolayer NbSe$_{2}$ Films[J]. Chin. Phys. Lett., 2021, 38(10): 067402
[9] Yu Dong, Yangyang Lv, Zuyu Xu, M. Abdel-Hafiez, A. N. Vasiliev, Haipeng Zhu, Junfeng Wang, Liang Li, Wanghao Tian, Wei Chen, Song Bao, Jinghui Wang, Yueshen Wu, Yulong Huang, Shiliang Li, Jie Yuan, Kui Jin, Labao Zhang, Huabing Wang, Shun-Li Yu, Jinsheng Wen, Jian-Xin Li, Jun Li, and Peiheng Wu. Observation of a Ubiquitous ($\pi, \pi$)-Type Nematic Superconducting Order in the Whole Superconducting Dome of Ultra-Thin BaFe$_{2-x}$Ni$_x$As$_2$ Single Crystals[J]. Chin. Phys. Lett., 2021, 38(9): 067402
[10] Qiang Gao, Yuchen Zhao, Xing-Jiang Zhou, and Zhihai Zhu. Preparation of Superconducting Thin Films of Infinite-Layer Nickelate Nd$_{0.8}$Sr$_{0.2}$NiO$_{2}$[J]. Chin. Phys. Lett., 2021, 38(7): 067402
[11] Yongqing Cai, Tao Xie, Huan Yang, Dingsong Wu, Jianwei Huang, Wenshan Hong, Lu Cao, Chang Liu, Cong Li, Yu Xu, Qiang Gao, Taimin Miao, Guodong Liu, Shiliang Li, Li Huang, Huiqian Luo, Zuyan Xu, Hongjun Gao, Lin Zhao, and X. J. Zhou. Common ($\pi$,$\pi$) Band Folding and Surface Reconstruction in FeAs-Based Superconductors[J]. Chin. Phys. Lett., 2021, 38(5): 067402
[12] Jiayu Ma, Junlin Kuang, Wenwen Cui, Ju Chen, Kun Gao, Jian Hao, Jingming Shi, and Yinwei Li. Metal-Element-Incorporation Induced Superconducting Hydrogen Clathrate Structure at High Pressure[J]. Chin. Phys. Lett., 2021, 38(2): 067402
[13] Qiang Gao, Lin Zhao, Cheng Hu, Hongtao Yan, Hao Chen, Yongqing Cai, Cong Li, Ping Ai, Jing Liu, Jianwei Huang, Hongtao Rong, Chunyao Song, Chaohui Yin, Qingyan Wang, Yuan Huang, Guo-Dong Liu, Zu-Yan Xu, and Xing-Jiang Zhou. Electronic Evolution from the Parent Mott Insulator to a Superconductor in Lightly Hole-Doped Bi$_2$Sr$_2$CaCu$_2$O$_{8+\delta}$[J]. Chin. Phys. Lett., 2020, 37(8): 067402
[14] Ya-Ting Jia, Jian-Fa Zhao, Si-Jia Zhang, Shuang Yu, Guang-Yang Dai, Wen-Min Li, Lei Duan, Guo-Qiang Zhao, Xian-Cheng Wang, Xu Zheng, Qing-Qing Liu, You-Wen Long, Zhi Li, Xiao-Dong Li, Hong-Ming Weng, Run-Ze Yu, Ri-Cheng Yu, Chang-Qing Jin. Superconductivity in Topological Semimetal $\theta$-TaN at High Pressure[J]. Chin. Phys. Lett., 2019, 36(8): 067402
[15] Ping Ai, Qiang Gao, Jing Liu, Yuxiao Zhang, Cong Li, Jianwei Huang, Chunyao Song, Hongtao Yan, Lin Zhao, Guo-Dong Liu, Gen-Da Gu, Feng-Feng Zhang, Feng Yang, Qin-Jun Peng, Zu-Yan Xu, Xing-Jiang Zhou. Distinct Superconducting Gap on Two Bilayer-Split Fermi Surface Sheets in Bi$_2$Sr$_2$CaCu$_2$O$_{8+\delta}$ Superconductor[J]. Chin. Phys. Lett., 2019, 36(6): 067402
Viewed
Full text


Abstract