Chin. Phys. Lett.  2013, Vol. 30 Issue (6): 064203    DOI: 10.1088/0256-307X/30/6/064203
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
The Double-ended 750 nm and 532 nm Laser Output from PPLN-FWM
WANG Tao1,2,4*, LI Yu-Xiang3, YAO Jian-Quan4, GUO Ling1 , WANG Zhuo2, HAN Sha-Sha1, ZHANG Cui-Ying1, ZHONG Kai4
1Faculty of Mechanical Engineering, Hebei University of Technology, Tianjin 300230
2Jin Tian Yang Laser Electronic Co., LTD, Wuxi 214192
3Faculty of Mechanics Engineering, Tianjin University of Technology, Tianjin 300160
4College of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072
Cite this article:   
WANG Tao, LI Yu-Xiang, YAO Jian-Quan et al  2013 Chin. Phys. Lett. 30 064203
Download: PDF(472KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate 750 nm and 532 nm dual-wavelength laser for applications in the internet of things. A kind of optical maser is developed, in which the semiconductor module outputs the 808 nm pump light and then it goes into a double-clad Nd3+:YAG monocrystal optical fiber through the intermediate coupler and forms a 1064 nm laser. The laser outputs come from both left and right terminals. In the right branch, the laser goes into the right cycle polarization LinNbO3 (PPLN) crystal through the right coupler, produces the optical parametric oscillation and forms the signal light λ1 (1500 nm), the idle frequency light λ2 (3660.55 nm), and the second-harmonic of the signal light λ3 (750 nm). These three kinds of light and the pump light λ4 together form the frequency matching and the quasi-phase matching, then the four-wave mixing occurs to create the high-gain light at wavelength 750 nm. Meanwhile, in the left branch, the laser goes into the left PPLN crystal through the left coupler, engenders frequency doubling and forms the light at wavelength 532 nm. That is to say, the optical maser provides 750 nm and 532 nm dual-wavelength laser outputting from two terminals, which is workable.
Received: 11 January 2013      Published: 31 May 2013
PACS:  42.25.Bs (Wave propagation, transmission and absorption)  
  42.65.Yj (Optical parametric oscillators and amplifiers)  
  42.55.Wd (Fiber lasers)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/6/064203       OR      https://cpl.iphy.ac.cn/Y2013/V30/I6/064203
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Tao
LI Yu-Xiang
YAO Jian-Quan
GUO Ling
WANG Zhuo
HAN Sha-Sha
ZHANG Cui-Ying
ZHONG Kai
[1] Yao J Q 1995 Nonlinear Optics: Frequency Conversion Laser Tuning Technology (Beijing: Science Press) p 27 (in Chinese)
[2] Grawal G P A, Hu G J and Huang C Y 1991 Nonlinear Fiber Optics (Tianjin: Tianjin University Press) p 315 (in Chinese)
[3] Wang T 2003 PhD Dissertation (Tianjin: Tianjin University) p 82
[4] Liang X Y 2002 Chin. J. Lasers 29 10
[5] Wang T, Yao J Q and Yu D Y 2004 Chin. J. Lasers 31 284 (in Chinese)
Related articles from Frontiers Journals
[1] Xin Tong  and Daomu Zhao. Propagation Characteristics of Exponential-Cosine Gaussian Vortex Beams[J]. Chin. Phys. Lett., 2021, 38(8): 064203
[2] Zhong-Hua Qian, Zi-Han Ding, Ming-Zhong Ai, Yong-Xiang Zheng, Jin-Ming Cui, Yun-Feng Huang, Chuan-Feng Li, and Guang-Can Guo. Bayesian Optimization for Wavefront Sensing and Error Correction[J]. Chin. Phys. Lett., 2021, 38(6): 064203
[3] Yan-Ning Liu, Xiao-Long Weng, Peng Zhang, Wen-Xin Li, Yu Gong, Li Zhang, Tian-Cheng Han, Pei-Heng Zhou, and Long-Jiang Deng. Ultra-Broadband Infrared Metamaterial Absorber for Passive Radiative Cooling[J]. Chin. Phys. Lett., 2021, 38(3): 064203
[4] Peng Chen, Xianglin Kong, Jianfei Han, Weihua Wang, Kui Han, Hongyu Ma, Lei Zhao, and Xiaopeng Shen. Wide-Angle Ultra-Broadband Metamaterial Absorber with Polarization-Insensitive Characteristics[J]. Chin. Phys. Lett., 2021, 38(2): 064203
[5] Xue-Chun Zhao, Lei Zhang, Rong Lin, Shu-Qin Lin, Xin-Lei Zhu, Yang-Jian Cai, and Jia-Yi Yu. Hermite Non-Uniformly Correlated Array Beams and Its Propagation Properties[J]. Chin. Phys. Lett., 2020, 37(12): 064203
[6] Han Zhang, Chen Ming, Ke Yang, Hao Zeng, Shengbai Zhang, and Yi-Yang Sun. Chalcogenide Perovskite YScS$_{3}$ as a Potential p-Type Transparent Conducting Material[J]. Chin. Phys. Lett., 2020, 37(9): 064203
[7] Xinghong Zhu, Pengfei Zhao, and Huanyang Chen. Multi-Core Conformal Lenses[J]. Chin. Phys. Lett., 2020, 37(8): 064203
[8] Fei Xiang, Lin Zhang, Tao Chen, Yuan-Hong Zhong, Jin Li. Transverse Propagation Characteristics and Coherent Effect of Gaussian Beams *[J]. Chin. Phys. Lett., 0, (): 064203
[9] Meng-Yao Yan , Bi-Jun Xu, Zhi-Chao Sun , Zhen-Dong Wu , Bai-Rui Wu . Terahertz Perfect Absorber Based on Asymmetric Open-Loop Cross-Dipole Structure[J]. Chin. Phys. Lett., 0, (): 064203
[10] Fei Xiang, Lin Zhang, Tao Chen, Yuan-Hong Zhong, Jin Li. Transverse Propagation Characteristics and Coherent Effect of Gaussian Beams[J]. Chin. Phys. Lett., 2020, 37(6): 064203
[11] Meng-Yao Yan , Bi-Jun Xu, Zhi-Chao Sun , Zhen-Dong Wu , Bai-Rui Wu . Terahertz Perfect Absorber Based on Asymmetric Open-Loop Cross-Dipole Structure[J]. Chin. Phys. Lett., 2020, 37(6): 064203
[12] Shuai-Meng Wang, Xiao-Hong Sun, De-Li Chen, Fan Wu. GaP-Based High-Efficiency Elliptical Cylinder Metasurface in Visible Light[J]. Chin. Phys. Lett., 2020, 37(5): 064203
[13] Xuannan Wu, Guanwen Yuan, Rui Zhu, Jicheng Wang, Fuhua Gao, Feiliang Chen, Yidong Hou. Giant Broadband One Way Transmission Based on Directional Mie Scattering and Asymmetric Grating Diffraction Effects[J]. Chin. Phys. Lett., 2020, 37(4): 064203
[14] Zong-Cheng Xu, Liang Wu, Ya-Ting Zhang, De-Gang Xu, Jian-Quan Yao. Photoexcited Blueshift and Redshift Switchable Metamaterial Absorber at Terahertz Frequencies[J]. Chin. Phys. Lett., 2019, 36(12): 064203
[15] Si-Bo Hao, Zi-Li Zhang, Yuan-Yuan Ma, Meng-Yu Chen, Yang Liu, Hao-Chong Huang, Zhi-Yuan Zheng. Terahertz Lens Fabricated by Natural Dolomite[J]. Chin. Phys. Lett., 2019, 36(12): 064203
Viewed
Full text


Abstract