ATOMIC AND MOLECULAR PHYSICS |
|
|
|
|
Polarization of M2 Line Emitted Following Electron-Impact Excitation of Beryllium-Like Ions |
SHI Ying-Long1,2, DONG Chen-Zhong1**, MA Xiao-Yun1, WU Zhong-Wen1, XIE Lu-You1, FRITZSCHE Stephan3 |
1Key Laboratory of Atomic and Molecular Physics & Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070 2College of Physics and Information Science, Tianshui Normal University, Tianshui 741001 3Helmholtz-Institut Jena, Fr?belstieg 3, Jena D-07743, Germany and Theoretisch-Physikalisches Institut, Friedrich-Schiller-Universit?t Jena, Max-Wien-Platz 1, Jena D-07743, Germany
|
|
Cite this article: |
SHI Ying-Long, DONG Chen-Zhong, MA Xiao-Yun et al 2013 Chin. Phys. Lett. 30 063401 |
|
|
Abstract Detailed calculations are carried out for the electron-impact excitation cross sections from the ground state to the individual magnetic sublevels of the 1s2s22p3/2 J=2 excited state of highly-charged beryllium-like ions by using a fully relativistic distorted-wave (RDW) method. The contributions of the Breit interaction to the linear polarization of the 1s2s22p3/2 J=2→1s22s2 J=0 magnetic quadrupole (M2) line are investigated systematically for the beryllium isoelectronic sequence with 42≤Z ≤92. It is found that the Breit interaction depolarizes significantly the linear polarization of the M2 fluorescence radiation and that these depolarization effects increase as the incident electron energy and/or the atomic number is enlarged.
|
|
Received: 11 March 2013
Published: 31 May 2013
|
|
PACS: |
34.80.Dp
|
(Atomic excitation and ionization)
|
|
32.30.Rj
|
(X-ray spectra)
|
|
31.30.J-
|
(Relativistic and quantum electrodynamic (QED) effects in atoms, molecules, and ions)
|
|
|
|
|
[1] Berezhko E G and Kabachnik N M 1977 J. Phys. B: At. Mol. Phys. 10 2467 [2] Haug E 1981 Sol. Phys. 71 77 [3] Kieffer J C, Matte J P, Chaker M et al 1993 Phys. Rev. E 48 4648 [4] Shlyaptseva A S, Hansen S B, Kantsyrev V L et al 2001 Rev. Sci. Instrum. 72 1241 [5] Beiersdorfer P, Phillips T W, Wong K L et al 1992 Phys. Rev. A 46 3812 [6] Henderson J R, Beiersdorfer P, Bennett C L et al 1990 Phys. Rev. Lett. 65 705 [7] Takács E, Meyer E S, Gillaspy J D et al 1996 Phys. Rev. A 54 1342 [8] Nakamura N, Kato D, Miura N et al 2001 Phys. Rev. A 63 024501 [9] Robbins D L, Beiersdorfer P, Faenov A Ya et al 2006 Phys. Rev. A 74 022713 [10] Inal M K and Dubau J 1987 J. Phys. B: At. Mol. Phys. 20 4221 [11] Itikawa Y, Srivastave R and Sakimoto K 1991 Phys. Rev. A 44 7195 [12] Chen C Y, Qi J B, Wang Y S, Xu X J and Sun Y S 2000 Chin. Phys. Lett. 17 403 [13] Zeng J L, Zhao G and Yuan J M 2005 Chin. Phys. Lett. 22 1972 [14] Kai T, Nakazaki S, Kawamura T, Nishimura H and Mima K 2007 Phys. Rev. A 75 062710 [15] Wu Z Q, Li Y M, Duan B, Zhang H, Yan J 2009 Chin. Phys. Lett. 26 123202 [16] Chen C Y, Wang K, Huang M et al 2010 J. Quant. Spectrosc. Radiat. Transfer 111 843 [17] Jiang J, Dong C Z, Xie L Y and Wang J G 2008 Phys. Rev. A 78 022709 [18] Reed K J and Chen M H 1993 Phys. Rev. A 48 3644 [19] Fontes C J, Zhang H L and Sampson 1999 Phys. Rev. A 59 295 [20] Bostock C J, Fursa D V and Bray I 2009 Phys. Rev. A 80 052708 [21] Wu Z W, Jiang J and Dong C Z 2011 Phys. Rev. A 84 032713 [22] Fritzsche S, Surzhykov A and St?hlker Th 2009 Phys. Rev. Lett. 103 113001 [23] Weber G, Br?uning H, Surzhykov A et al 2010 Phys. Rev. Lett. 105 243002 [24] Nakano Y 2012 Private communication [25] Zhang H L, Sampson D H and Clark R E H 1990 Phys. Rev. A 41 198 [26] Zhang H L, Sampson D H and Mohanty A K 1989 Phys. Rev. A 40 616 [27] Grant I P 2007 Relativistic Quantum Theory of Atoms and Molecules: Theory and Computation (New York: Springer) [28] Jiang J, Dong C Z, Xie L Y et al 2007 Chin. Phys. Lett. 24 691 [29] Fritzsche S 2001 J. Electron Spectrosc. Relat. Phenom. 114–116 1155 [30] Fritzsche S 2012 Comput. Phys. Commun. 183 1525 [31] Chen M H and Reed K J 1994 Phys. Rev. A 50 2279 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|