Chin. Phys. Lett.  2013, Vol. 30 Issue (6): 060202    DOI: 10.1088/0256-307X/30/6/060202
GENERAL |
Interactions among Periodic Waves and Solitary Waves of the (2+1)-Dimensional Konopelchenko–Dubrovsky Equation
LEI Ya1, LOU Sen-Yue1,2**
1Faculty of Science, Ningbo University, Ningbo 315211
2Shanghai Key Laboratory of Trustworthy Computing, East China Normal University, Shanghai 200062
Cite this article:   
LEI Ya, LOU Sen-Yue 2013 Chin. Phys. Lett. 30 060202
Download: PDF(761KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract By using the truncated Painlevé analysis and the generalized tanh function expansion approaches, many interaction solutions among solitons and other types of nonlinear excitations of the Konopelchenko–Dubrovsky (KD) equation can be obtained. Particularly, the soliton-cnoidal wave interaction solutions are studied by means of the Jacobi elliptic functions and the third type of incomplete elliptic integrals.
Received: 21 January 2013      Published: 31 May 2013
PACS:  02.30.Ik (Integrable systems)  
  05.45.Yv (Solitons)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/6/060202       OR      https://cpl.iphy.ac.cn/Y2013/V30/I6/060202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LEI Ya
LOU Sen-Yue
[1] Lou S Y 2000 Phys. Lett. A 277 94
Lou S Y and Ruan H Y 2001 J. Phys. A: Math. Gen. 34 305
Tang X Y, Lou S Y and Zhang Y 2002 Phys. Rev. E 66 046601
Ying J P and Lou S Y 2003 Chin. Phys. Lett. 20 1448
Lou S Y, Tang X Y and Chen C L 2002 Chin. Phys. Lett. 19 769
[2] Gardner S C, Green J M, Kruskal M D and Miura R M 1967 Phys. Rev. Lett. 19 1095
[3] Gu C H 1992 Lett. Math. Phys. 26 199
Liu Q P, Lou S Y and Hu H C 2003 Chin. Phys. Lett. 20 1413
[4] Hirota R 1971 Phys. Rev. Lett. 27 1192
[5] Lou S Y 1990 Phys. Lett. A 151 133
Lou S Y, Ruan H Y, Chen D F and Chen W Z 1991 J. Phys. A: Math. Gen. 24 1455
Lou S Y, Tang X Y and Lin J 2000 J. Math. Phys. 41 8286
[6] Lou S Y 1998 Z. Naturforsch. A 53 251
[7] Lou S Y, Cheng X P and Tang X Y 2012 arXiv:1208.5314 [nlin.SI]
[8] Konopelcheno B G and Dubrovsky V G 1984 Phys. Lett. A 102 15
[9] Jiang Z H and Bullough R K 1987 J. Phys. A: Math. Gen. 20 429
[10] Lin J, Lou S Y and Wang K L 2001 Chin. Phys. Lett. 18 1173
[11] Lan H B and Wang K L 1990 J. Phys. A 23 3923
Chen W Z and Lou S Y 1991 Commun. Theor. Phys. 16 89
Huang G X, Lou S Y and Dai X X 1989 Phys. Lett. A 139 373
Lou S Y and Ni G J 1990 Singapore J. Phys. 7 47
Fan E G 2000 Phys. Lett. A 277 212
[12] Shin H J 2005 Phys. Rev. E 71 036628
Shin H J 2004 J. Phys. A: Math. Gen. 37 8017
Shin H J 2004 arXiv:nlin/0410065v2 [nlin.SI]
[13] Egorowa I, Michor J and Teschl G 2009 Math. Nachr. 282 526
[14] Lou S Y, Hu X R and Chen Y 2012 arXiv:1201.3409 [math-ph]
Lou S Y, Hu X R and Chen Y 2012 J. Phys. A: Math. Theor. 45 155209
Hu X R, Lou S Y and Chen Y 2012 Phys. Rev. E 85 056607
[15] Cheng X P, Chen C L and Lou S Y 2012 arXiv:1208.3259 [nlin.SI]
Related articles from Frontiers Journals
[1] S. Y. Lou, Man Jia, and Xia-Zhi Hao. Higher Dimensional Camassa–Holm Equations[J]. Chin. Phys. Lett., 2023, 40(2): 060202
[2] Wen-Xiu Ma. Matrix Integrable Fourth-Order Nonlinear Schr?dinger Equations and Their Exact Soliton Solutions[J]. Chin. Phys. Lett., 2022, 39(10): 060202
[3] Chong Liu, Shao-Chun Chen, Xiankun Yao, and Nail Akhmediev. Modulation Instability and Non-Degenerate Akhmediev Breathers of Manakov Equations[J]. Chin. Phys. Lett., 2022, 39(9): 060202
[4] Xiao-Man Zhang, Yan-Hong Qin, Li-Ming Ling, and Li-Chen Zhao. Inelastic Interaction of Double-Valley Dark Solitons for the Hirota Equation[J]. Chin. Phys. Lett., 2021, 38(9): 060202
[5] Kai-Hua Yin, Xue-Ping Cheng, and Ji Lin. Soliton Molecule and Breather-Soliton Molecule Structures for a General Sixth-Order Nonlinear Equation[J]. Chin. Phys. Lett., 2021, 38(8): 060202
[6] Yusong Cao and Junpeng Cao. Exact Solution of a Non-Hermitian Generalized Rabi Model[J]. Chin. Phys. Lett., 2021, 38(8): 060202
[7] Zequn Qi , Zhao Zhang , and Biao Li. Space-Curved Resonant Line Solitons in a Generalized $(2+1)$-Dimensional Fifth-Order KdV System[J]. Chin. Phys. Lett., 2021, 38(6): 060202
[8] Wei Wang, Ruoxia Yao, and Senyue Lou. Abundant Traveling Wave Structures of (1+1)-Dimensional Sawada–Kotera Equation: Few Cycle Solitons and Soliton Molecules[J]. Chin. Phys. Lett., 2020, 37(10): 060202
[9] Li-Chen Zhao, Yan-Hong Qin, Wen-Long Wang, Zhan-Ying Yang. A Direct Derivation of the Dark Soliton Excitation Energy[J]. Chin. Phys. Lett., 2020, 37(5): 060202
[10] Danda Zhang, Da-Jun Zhang, Sen-Yue Lou. Lax Pairs of Integrable Systems in Bidifferential Graded Algebras[J]. Chin. Phys. Lett., 2020, 37(4): 060202
[11] Yu-Han Wu, Chong Liu, Zhan-Ying Yang, Wen-Li Yang. Breather Interaction Properties Induced by Self-Steepening and Space-Time Correction[J]. Chin. Phys. Lett., 2020, 37(4): 060202
[12] Bao Wang, Zhao Zhang, Biao Li. Soliton Molecules and Some Hybrid Solutions for the Nonlinear Schr?dinger Equation[J]. Chin. Phys. Lett., 2020, 37(3): 060202
[13] Zhao Zhang, Shu-Xin Yang, Biao Li. Soliton Molecules, Asymmetric Solitons and Hybrid Solutions for (2+1)-Dimensional Fifth-Order KdV Equation[J]. Chin. Phys. Lett., 2019, 36(12): 060202
[14] Zhou-Zheng Kang, Tie-Cheng Xia. Construction of Multi-soliton Solutions of the $N$-Coupled Hirota Equations in an Optical Fiber[J]. Chin. Phys. Lett., 2019, 36(11): 060202
[15] Yong-Shuai Zhang, Jing-Song He. Bound-State Soliton Solutions of the Nonlinear Schr?dinger Equation and Their Asymmetric Decompositions[J]. Chin. Phys. Lett., 2019, 36(3): 060202
Viewed
Full text


Abstract