CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Characteristics of an Indium-Rich InGaN p–n Junction Grown on a Strain-Relaxed InGaN Buffer Layer |
YANG Lian-Hong**, ZHANG Bao-Hua, GUO Fu-Qiang |
Xinjiang Laboratory of Phase Transitions and Microstructures of Condensed Matter, Yili Normal University, Yining 835000 Department of Physics, Changji College, Changji 831100
|
|
Cite this article: |
YANG Lian-Hong, ZHANG Bao-Hua, GUO Fu-Qiang 2013 Chin. Phys. Lett. 30 047301 |
|
|
Abstract An indium-rich InGaN p-n junction is grown on a strain-relaxed InGaN buffer layer. The results show that the n-InGaN is grown coherently on the buffer layer but the p-InGaN layer exhibits a partial strain relaxation. The fabricated InGaN p-n junction has a low reverse leakage current density on the order of 10?8 A/cm2 within the measured voltage range, and exhibits a wide spectral response due to the presence of band tail states or deep level states which origin from indium composition fluctuation or various defects. The measured peak responsivity at 438 nm is 31 mA/W at zero bias and reaches 118 mA/W at 3 V reverse bias. In addition, the Raman spectra of the p- and n-type InGaN alloys are also analyzed.
|
|
Received: 25 October 2012
Published: 28 April 2013
|
|
PACS: |
73.40.Kp
|
(III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)
|
|
85.60.Bt
|
(Optoelectronic device characterization, design, and modeling)
|
|
81.05.Ea
|
(III-V semiconductors)
|
|
|
|
|
[1] Wierer J J Krames M R, Epler J E, Gardner N F, Craford M G, Wendt J R, Simmons J A and Sigalas M M 2004 Appl. Phys. Lett. 84 3885 [2] Nakamura S 1998 Science 281 956 [3] Narukawa Y, Kawakami Y, Funato M and Fujita S 1997 Appl. Phys. Lett. 70 981 [4] Yang Y, Cao X A and Yan C H 2009 Appl. Phys. Lett. 94 041117 [5] Dahal R, Li J, Aryal K, Lin J Y and Jiang H X 2010 Appl. Phys. Lett. 97 073115 [6] Zhang X B, Wang X L, Xiao H L, Yang C B, Hou Q F, Yin H B, Chen H and Wang Z G 2011 Chin. Phys. B 20 028402 [7] Cai X M, Zeng S W and Zhang B P 2009 Appl. Phys. Lett. 95 173504 [8] Xue J J, Chen D J, Liu B, Xie Z L, Jiang R L, Zhang R and Zheng Y D 2009 Chin. Phys. Lett. 26 098102 [9] Sang L W, Liao M Y, Koide Y and Sumiya M 2011 Appl. Phys. Lett. 98 103502 [10] Chen D J, Liu B, Lu H, Xie Z L, Zhang R and Zheng Y D 2009 IEEE Electron Device Lett. 30 605 [11] Singh R, Doppalapudi D, Moustakas T D and Romano L T 1997 Appl. Phys. Lett. 70 1089 [12] Fischer A M, Wu Z, Sun K, Wei Q Y, Huang Y, Senda R, Iida D, Iwaya M, Amano H and Ponce F A 2009 Appl. Phys. Express 2 041002 [13] Sang L, Takeguchi M, Lee W, Nakayama Y, Lozach M, Sekiguchi T and Sumiya M 2010 Appl. Phys. Express 3 111004 [14] Alexson D, Bergman L, Nemanich R J, Dutta M, Stroscio M A, Parker C A, Bedair S M, E I-Masry N A and Adar F 2001 J. Appl. Phys. 89 798 [15] Hernandez S, Cusco R, Pastor D, Artus L, O`Donnell K P, Martin R W, Watson I M, Nanishi Y and Calleja E 2005 J. Appl. Phys. 98 013511 [16] Chen D J, Huang Y, Liu B, Xie Z L, Zhang R, Zheng Y D, Wei Y and Narayanamurti V 2009 J. Appl. Phys. 105 063714 [17] Lai K Y, Lin G J, Lai Y L, Chen Y F and He J H 2010 Appl. Phys. Lett. 96 081103 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|