CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
A Dynamic-Order Fractional Dynamic System |
SUN Hong-Guang1, SHENG Hu2, CHEN Yang-Quan3, CHEN Wen1**, YU Zhong-Bo4 |
1State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, College of Mechanics and Materials, Hohai University, Nanjing 210098 2School of Electronic and Information Engineering, Dalian Jiaotong University, Dalian 116028 3Mechatronics, Embedded Systems and Automation (MESA) Lab, School of Engineering, University of California, Merced, 5200 North Lake Road, Merced, CA 95343, USA 4State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098
|
|
Cite this article: |
SUN Hong-Guang, SHENG Hu, CHEN Yang-Quan et al 2013 Chin. Phys. Lett. 30 046601 |
|
|
Abstract Motivated by the experimental result of an electronic circuit element "fractor", we introduce the concept of a dynamic-order fractional dynamic system, in which the differential-order of a fractional dynamic system is determined by the output signal of another dynamic system. The concept offers an explanation for the physical mechanism of variable-order fractional dynamic systems and multi-system interaction. The properties and potential applications of dynamic-order fractional dynamic systems are further explored by analyzing anomalous relaxation and diffusion processes.
|
|
Received: 05 November 2012
Published: 28 April 2013
|
|
PACS: |
66.10.C-
|
(Diffusion and thermal diffusion)
|
|
05.10.Gg
|
(Stochastic analysis methods)
|
|
02.60.Cb
|
(Numerical simulation; solution of equations)
|
|
|
|
|
[1] Metzler R and Klafter J 2000 Phys. Rep. 339 1 [2] Yan L and Bao J D 2011 Chin. Phys. Lett. 28 110201 [3] Magin R L, Abdullah O, Baleanu D and Zhou X J 2008 J. Magn. Reson. 190 255 [4] Sokolov I M and Klafter J 2006 Phys. Rev. Lett. 97 140602 [5] Hernandez-Jimenez A, Hernandez-Santiago J, Macias-Garcia A and Sanchez-Gonzalez J 2002 Polym. Test. 21 325 [6] Yang P, Lam Y and Zhu K Q 2010 J. Non-Newtonian Fluid Mech. 165 88 [7] Chen Y Q and Moore K L 2002 IEEE Trans. Circuits Syst. I 49 363 [8] Podlubny I 1999 IEEE Trans. Autom. Control 44 208 [9] Li Y, Chen Y Q and Podlubny I 2009 Automatica 45 1965 [10] Kilbas A A, Srivastava H M and Trujillo J J 2006 Theory and Applications of Fractional Differential Equations (Boston: North-Holland) [11] Deng W, Li C and Lü J 2007 Nonlinear Dyn. 48 409 [12] Wang J W and Chen A M 2010 Chin. Phys. Lett. 27 110501 [13] Wu G C and Lee E W M 2010 Phys. Lett. A 374 2506 [14] Samko S G 1995 Anal. Math. 21 213 [15] Lorenzo C F and Hartley T T 2002 Nonlinear Dyn. 29 57 [16] Sun H G, Chen W and Chen Y Q 2009 Physica A 388 4586 [17] Ingman D, Suzdalnitsky J and Zeifman M 2000 J. Appl. Mech. 67 383 [18] Gl?ckle W G and Nonnenmacher T F 1995 Biophys. J. 46 46 [19] Lv K and Bao J D 2007 Phys. Rev. E 76 061119 [20] Shui M, Li C W, Yang J Y et al 2010 Chin. Phys. B 19 014217 [21] Yao R, Zhou Y S, Wang F H 2009 Acta Phys. Sin. 58 177 (in Chinese) [22] Bohannan G W 2008 J. Vib. Control 14 1487 [23] Sheng H, Sun H G, Coopmans C, Chen Y Q and Bohannan G W 2011 Eur. Phys. J. Spec. Top. 193 93 [24] Jesus I S and Tenreiro Machado J A 2009 Nonlinear Dyn. 56 45 [25] Coimbra C F M 2003 Ann. Phys. (Leipzig) 12(11–12) 692 [26] Meier S A, Peter M A and B?hm M 2007 Comput. Mater. Sci. 39 29 [27] Reimus P, Pohll G, Mihevc T, Chapman J, Haga M, Lyles S K B, Niswonger R and Sanders P 2003 Water Resour. Res. 39 1356 [28] Bagley R L and Torvik P J 1983 J. Rheol. 27 201 [29] Metzler R and Klafter J 2002 J. Non-Cryst. Solids 305 81 [30] Sun H G, Song X N and Chen Y Q 2010 Proc. 8th World Congress on Intelligent Control and Automation (6–9 July 2010 Jinan, China) p 197 [31] Sun H G, Chen W, Li C, Chen Y Q 2012 Int. J. Bifurcation Chaos Appl. Sci. Eng. 22 1250085 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|