CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
P-type ZnO:N Films Prepared by Thermal Oxidation of Zn3N2 |
ZHANG Bin1,2**, LI Min1,2,3, WANG Jian-Zhong1,2, SHI Li-Qun1,2 |
1Applied Ion Beam Physics Laboratory (Key Laboratory of the Ministry of Education), Institute of Modern Physics, Fudan University, Shanghai 200433 2Department of Nuclear Science and Technology, Fudan University, Shanghai 200433 3Alternative Energy and Power Generation Technology Institute, Dongfang Electric Corporation Central Academy, Chengdu 611731
|
|
Cite this article: |
ZHANG Bin, LI Min, WANG Jian-Zhong et al 2013 Chin. Phys. Lett. 30 027303 |
|
|
Abstract We prepare p-type ZnO:N films by annealing Zn3N2 films in oxygen over a range of temperatures. The prepared films are characterized by various techniques, such as Rutherford backscattering spectroscopy, x-ray diffraction, x-ray photoemission spectroscopy, the Hall effect and photoluminescence spectra. The results show that the Zn3N2 films start to transform to ZnO at 300°C and the N content decreases with an increase in annealing temperature. N has two local chemical states: zinc oxynitride (ZnO1?xNx) and substitutional NO in O-rich local environments (α -NO). The conduction type changes from n-type to p-type upon oxidation at 400–600°C, indicating that N is an effective acceptor in the ZnO film. The photoluminescence spectra show the UV emission and defect-related emissions of ZnO:N films. The mechanism and efficiency of p-type doping are briefly discussed.
|
|
Received: 30 November 2012
Published: 02 March 2013
|
|
|
|
|
|
[1] Tsukazaki A, Onuma T, Ohtani M, Makino T, Sumiya M, Ohtani K, Chichibu S F, Fuke S, Segawa Y, Ohno H, Koinuma H and Kawasaki M 2005 Nat. Mater. 4 42 [2] Jiao S J, Zhang Z Z, Lu Y M, Shen D Z, Yao B, Zhang J Y, Li B H, Zhao D X and Fan X W 2006 Appl. Phys. Lett. 88 031911 [3] Ozgur U, Alivov Y I, Liu C, Teke A, Reshchikov M A, Dogan S, Avrutin V, Cho S J and Morkoc H 2005 J. Appl. Phys. 98 041301 [4] Tang K, Gu S L, Zhu S M, Liu J G, Chen H, Ye J D, Zhang R and Zheng Y D 2009 Appl. Phys. Lett. 95 192106 [5] Tan S T, Sun X W, Yu Z G, Wu P, Lo G Q and Kwong D L 2007 Appl. Phys. Lett. 91 072101 [6] Zhang S B, Wei S H and Zunger A 2001 Phys. Rev. B 63 075205 [7] Sun J C, Liang H W, Zhao J Z, Bian J M, Feng Q J, Hu L Z, Zhang H Q, Liang X P, Luo Y M and Du G T 2008 Chem. Phys. Lett. 460 548 [8] Kong C Y, Qin G P, Ruan H B, Nan M, Zhu R J and Dai T L 2008 Chin. Phys. Lett. 25 1128 [9] Zhang Y Z, Lu J G, Ye Z Z, He H P, Chen L L and Zhao B H 2009 Chin. Phys. Lett. 26 046103 [10] Xiu F X, Yang Z, Mandalapu L J, Liua J L and Beyermann W P 2006 Appl. Phys. Lett. 88 152102 [11] Kang H S, Kim G H, Kim D L, Chang H W, Ahn B D and Leea S Y 2006 Appl. Phys. Lett. 89 181103 [12] Du G, Cui Y G, Xia X C, Li X P, Zhu H C, Zhang B L, Zhang Y T and Ma Y 2007 Appl. Phys. Lett. 90 243504 [13] Sun J W, Lu Y M, Liu Y C, Shen D Z, Zhang Z Z, Li B H, Zhang J Y, Yao B, Zhao D X and Fan X W 2006 Appl. Phys. Lett. 89 232101 [14] Lu J G, Zhang Y Z, Ye Z Z, Zhu L P, Wang L, Zhao B H and Liang Q L 2006 Appl. Phys. Lett. 88 222114 [15] Yao B, Shen D Z, Zhang Z Z, Wang X H, Wei Z P, Li B H, Lv Y M, Fan X W, Guan L X, Xing G Z, Cong C X and Xie Y P 2006 J. Appl. Phys. 99 123510 [16] Nakano Y, Morikawa T, Ohwaki T and Taga Y 2006 Appl. Phys. Lett. 88 172103 [17] Cong G W, Peng W Q, Wei H Y, Han X X, Wu J J, Liu X L, Zhu Q S, Wang Z G, Lu J G, Ye Z Z, Zhu L P, Qian H J, Su R, Hong C H, Zhong J, Ibrahim K and Hu T D 2006 Appl. Phys. Lett. 88 062110 [18] Tabet N, Faiz M and Al-Oteibi A 2008 J. Electron. Spectrosc. Relat. Phenom. 163 15 [19] Zhang J P, Zhang L D, Zhu L Q, Zhang Y, Liu M, Wang X J and He G 2007 J. Appl. Phys. 102 114903 [20] Li X H, Xu H Y, Zhang X T, Liu Y C, Sun J W and Lu Y M 2009 Appl. Phys. Lett. 95 191903 [21] Wang C, Ji Z G, Liu K, Xiang Y and Ye Z Z 2003 J. Cryst. Growth 259 279 [22] Ji Z G, Yang C X, Liu K and Ye Z Z 2003 J. Cryst. Growth 253 239 [23] Fujihara S, Ogawa Y and Kasai A 2004 Chem. Mater. 16 2965 [24] Gao X D, Li X M and Yu W D 2005 Mater. Res. Bull. 40 1104 [25] Hong R J, Shao J D, He H B and Fan Z X 2006 J. Cryst. Growth 290 334 [26] Zeng H B, Duan G T, Li Y, Yang S K, Xu X X and Cai W P 2010 Adv. Funct. Mater. 20 561 [27] Wu K Y, Fang Q Q, Wang W N, Zhou C, Huang W J, Li J G, Lv Q R, Liu Y M, Zhang Q P and Zhang H M 2010 J. Appl. Phys. 108 063530 [28] Chattopadhyay S, Dutta S, Pandit P, Jana D, Chattopadhyay S, Sarkar A, Kumar P, Kanjilal D, Mishra D K and Ray S K 2011 Phys. Status Solidi C 8 512 [29] Wei X Q, Man B Y, Liu M, Xue C S, Zhuang H Z and Yang C 2007 Physica B 388 145 [30] Panigrahy B, Aslam M, Misra D S, Ghosh M and Bahadur D 2010 Adv. Funct. Mater. 20 1161 [31] Zhan P, Wang W P, Liu C, Hu Y, Li Z C, Zhang Z J, Zhang P, Wang B Y and Cao X Z 2012 J. Appl. Phys. 111 033501 [32] Vanheusden K, Seager C H, Warren W L, Tallant D R and Voigt J A 1996 Appl. Phys. Lett. 68 403 [33] Chen S J, Liu Y C, Ma J G, Zhao D X, Zhi Z Z, Lu Y M, Zhang J Y, Shen D Z and Fan X W 2002 J. Cryst. Growth 240 467 [34] Anderson J and van de Walle C G 2007 Phys. Rev. B 76 165202 [35] Vlasenko L S and Watkins G D 2005 Phys. Rev. B 72 035203 [36] Zhang S B, Wei S H and Zunger A 2001 Phys. Rev. B 63 075205 [37] Hagemark K I and Chacha L C 1975 J. Solid State Chem. 15 261 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|