ATOMIC AND MOLECULAR PHYSICS |
|
|
|
|
Theory of X-Ray Anisotropy and Polarization Following the Dielectronic Recombination of Initially Hydrogen-Like Ions |
SHI Ying-Long1,2, DONG Chen-Zhong1**, FRITZSCHE Stephan3, ZHANG Deng-Hong1, XIE Lu-You1 |
1 Key Laboratory of Atomic and Molecular Physics & Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070 2College of Physics and Information Science, Tianshui Normal University, Tianshui 741001 3GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt D-64291, Germany
|
|
Cite this article: |
SHI Ying-Long, DONG Chen-Zhong, FRITZSCHE Stephan et al 2013 Chin. Phys. Lett. 30 023402 |
|
|
Abstract The angular distribution and polarization of the x-ray photoemission of highly charged helium-like ions is studied following the K–LL dielectronic recombination of initially hydrogen-like ions. Calculation is carried out within the framework of the density matrix theory combined with the multiconfiguration Dirac–Fock approach. Attention is paid to magnetic sublevel alignment in the resonant intermediate state and to its nonuniform radiative decay processes. It is shown that the Breit interaction between the incident and target electrons plays a significant role for the alignment of the resonant state and thus causes a substantial change in the x-ray emission characteristic, when compared to the incorporation of only the (non-relativistic) Coulomb interaction. The most prominent difference in alignment parameter is found in the 2s2p1/2 J=1 resonant state for a wide range of atomic numbers from 9 to 92. For this resonant state of helium-like ions, the Breit interaction becomes significant for ions with nuclear charge Z~30 already.
|
|
Received: 20 December 2012
Published: 02 March 2013
|
|
PACS: |
34.80.Lx
|
(Recombination, attachment, and positronium formation)
|
|
34.80.Dp
|
(Atomic excitation and ionization)
|
|
32.30.Rj
|
(X-ray spectra)
|
|
|
|
|
[1] Han Y 1985 Adv. At. Mol. Phys. 21 123 [2] Beiersdorfer P et al 1992 Phys. Rev. A 46 3812 [3] Schuch R et al 2005 Phys. Rev. Lett. 95 183003 [4] Brandau C et al 2008 Phys. Rev. Lett. 100 073201 [5] Shi Y L, Dong C Z and Zhang D H 2008 Phys. Lett. A 372 4913 [6] Müller A 2008 Adv. At. Mol. Opt. Phys. 55 293 [7] Ma X et al 2003 Phys. Rev. A 68 042712 [8] Fritzsche S, Kabachnik N M and Surzhykov A 2008 Phys. Rev. A 78 032703 [9] Matula O, Fritzsche S and Surzhykov A 2012 J. Phys. B: At. Mol. Opt. Phys. 45 215004 [10] Ou W Y, Shen T M, Chen C Y, Roger H and Zou Y M 2005 Chin. Phys. Lett. 22 2248 [11] Wu Z Q, Li Y M, Duan B, Zhang H, Yan J 2009 Chin. Phys. Lett. 26 123202 [12] Berezhko E and Kabachnik N M 1977 J. Phys. B: At. Mol. Phys. 10 2467 [13] Chen M H and Scofield J H 1995 Phys. Rev. A 52 2057 [14] Fritzsche S, Surzhykov A and St?hlker Th 2009 Phys. Rev. Lett. 103 113001 [15] Hu Z M et al 2012 Phys. Rev. Lett. 108 073002 [16] Wu Z W, Jiang J and Dong C Z 2011 Phys. Rev. A 84 032713 [17] Weber G et al 2010 Phys. Rev. Lett. 105 243002 [18] Blum K 1981 Density Matrix Theory and Applications (New York: Plenum Press) [19] Balashov V V, Grum-Grzhimailo A N and Kabachnik N M 2000 Polarization and Correlation Phenomena in Atomic Collisions (New York: Kluwer Academic/Plenum) [20] Grant I P 2007 Relativistic Quantum Theory of Atoms and Molecules: Theory and Computation (New York: Springer) [21] Fritzsche S 2001 J. Electron. Spectrosc. Relat. Phenom. 114–116 1155 [22] Fritzsche S 2012 Comput. Phys. Commun. 183 1525 [23] Jiang J, Dong C Z, Xie L Y and Wang J G 2008 Phys. Rev. A 78 022709 [24] Fritzsche S, Surzhykov A and St?lhlker Th 2011 Phys. Scr. T114 014002 [25] Fritzsche S, Kabachnik N M, Surzhykov A and St?hlker Th 2009 Nucl. Instrum. Methods B 267 257 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|