Chin. Phys. Lett.  2013, Vol. 30 Issue (2): 020305    DOI: 10.1088/0256-307X/30/2/020305
GENERAL |
Approximate Eigensolutions of the Deformed Woods–Saxon Potential via AIM
Sameer M. Ikhdair1,2, Babatunde J. Falaye3, Majid Hamzavi4*
1Department of Physics, Faculty of Science, An-Najah National University, Nablus, West Bank, Palestine
2Department of Physics, Near East University, 922022 Nicosia, Northern Cyprus, Turkey
3Theoretical Physics Section, Department of Physics, University of Ilorin, P.M.B. 1515, Ilorin, Nigeria
4Department of Science and Engineering, Abhar Branch, Islamic Azad University, Abhar, Iran
Cite this article:   
Sameer M. Ikhdair, Babatunde J. Falaye, Majid Hamzavi 2013 Chin. Phys. Lett. 30 020305
Download: PDF(527KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Using the Pekeris approximation, the Schr?dinger equation is solved for the nuclear deformed Woods–Saxon potential within the framework of the asymptotic iteration method. The energy levels are worked out and the corresponding normalized eigenfunctions are obtained in terms of hypergeometric function.
Received: 04 July 2012      Published: 02 March 2013
PACS:  03.65.Pm (Relativistic wave equations)  
  03.65.Ge (Solutions of wave equations: bound states)  
  03.65.-w (Quantum mechanics)  
  03.65.Fd (Algebraic methods)  
  02.30.Gp (Special functions)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/2/020305       OR      https://cpl.iphy.ac.cn/Y2013/V30/I2/020305
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Sameer M. Ikhdair
Babatunde J. Falaye
Majid Hamzavi
[1] Woods R D and Saxon D B 1954 Phys. Rev. 95 577
[2] Williams W S C 1996 Nuclear and Particle Physicsz (Oxford: Clarendon)
[3] Garcia F et al 1999 Eur. Phys. J. A 6 49
[4] Goldberg V et al 2004 Phys. Rev. C 69 031302
[5] Syntfelt A et al 2004 Eur. Phys. J. A 20 359
[6] Diaz-Torres A and Scheid W 2005 Nucl. Phys. A 757 373
[7] Guo J Y and Sheng Q 2005 Phys. Lett. A 338 90
[8] Chepurnov V A and Nemirovsky P E 1963 Nucl. Phys. 49 90
[9] Chasman R R and Wilkins B D 1984 Phys. Lett. B 149 433
[10] Dudek J and Wemer T 1978 J. Phys. G: Nucl. Phys. 4 1543
[11] Flügge S 1974 Practical Quantum Mechanics (Berlin: Springer-Verlag)
[12] Badalov V H Ahmadov H I and Badalov S V 2010 Int. J. Mod. Phys. E 19 1463
[13] Badalov V H Ahmadov H I and Badalov S V 2009 Int. J. Mod. Phys. E 18 631
[14] S M. Ikhdair and R. Sever 2010 Cent. Eur. J. Phys. 8 652
[15] Hamzavi M and Ikhdair S M 2012 Few-Body Syst. 53 461
[16] Ikhdair S M and Sever R 2007 Int. J. Theor. Phys. 46 1643
[17] Ciftci H et al 2003 J. Phys. A: Math. Gen. 36 11807
[18] Ciftci H et al 2005 Phys. Lett. A 340 388
[19] Ikhdair S M and Sever R 2007 Ann. Phys. (Leipzig) 16 218
[20] Landau L D and Lifshitz E M 1977 Quantum Mech. Non-relativistic Theory 3rd edn (New York: Pergamon)
Schiff L I 1968 Quantum Mechanics 3rd edn (New York: McGraw-Hill)
[21] Falaye B J 2012 Few-Body Syst. 53 557
Falaye B J 2012 Cent. Eur. J. Phys. 10 960
[22] Ikhdair S M and Hamzavi M 2012 Chin. Phys. B 21 110302
[23] Ikhdair S M and Sever R 2010 Int. J. Mod. Phys. A 25 3941
[24] G?nül B et al 2000 Phys. Lett. A 275 238
G?nül B 2004 Chin. Phys. Lett. 21 1685
[25] Dutt R et al 1985 J. Phys. A: Math. Gen. 18 1379
[26] Filho E D and Ricotta R M 1995 Mod. Phys. Lett. A 10 1613
[27] Mandelzweig V B 2006 Ann. Phys. (N. Y.) 321 2810
[28] Ikhdair S M and Sever R 2007 J. Math. Chem. 42 461
[29] Bitensky I S et al 1997 Nucl. Instrum. Methods B 125 201
[30] Ikhdair S M 2009 Eur. Phys. J. A 39 307
[31] Ikhdair S M and Sever R 2011 J. Phys. A: Math. Theor. 44 355301
[32] Barakat T 2006 J. Phys. A: Math. Gen. 39 823
[33] Fernandez F M 2004 J. Phys. A: Math. Gen. 37 6173
[34] Barakat T 2005 Phys. Lett. A 344 411
Related articles from Frontiers Journals
[1] Bo-Xing Cao  and Fu-Lin Zhang. The Analytic Eigenvalue Structure of the 1+1 Dirac Oscillator[J]. Chin. Phys. Lett., 2020, 37(9): 020305
[2] Wen-Ya Song, Fu-Lin Zhang. Dynamical Algebras in the 1+1 Dirac Oscillator and the Jaynes–Cummings Model[J]. Chin. Phys. Lett., 2020, 37(5): 020305
[3] Jian-Hui Yuan, Ni Chen, Hua Mo, Yan Zhang, Zhi-Hai Zhang. Tunneling Negative Magnetoresistance via $\delta$ Doping in a Graphene-Based Magnetic Tunnel Junction[J]. Chin. Phys. Lett., 2016, 33(03): 020305
[4] Ciprian Dariescu, Marina-Aura Dariescu. The $SO(3,1)$-Gauge Invariant Approach to Fermions on Rindler Spacetime[J]. Chin. Phys. Lett., 2016, 33(02): 020305
[5] A. N. Ikot, H. P. Obong, H. Hassanabadi. Minimal Length Quantum Mechanics of Dirac Particles in Noncommutative Space[J]. Chin. Phys. Lett., 2015, 32(03): 020305
[6] M. Eshghi. Pseudo-Harmonic Oscillatory Ring-Shaped Potential in a Relativistic Equation[J]. Chin. Phys. Lett., 2012, 29(11): 020305
[7] REN Na, WANG Jia-Xiang, LI An-Kang, WANG Ping-Xiao. Pair Production in an Intense Laser Pulse: The Effect of Pulse Length[J]. Chin. Phys. Lett., 2012, 29(7): 020305
[8] HUANG Zeng-Guang**, FANG Wei, , LU Hui-Qing, . Inflation and Singularity of a Bianchi Type-VII0 Universe with a Dirac Field in the Einstein–Cartan Theory[J]. Chin. Phys. Lett., 2011, 28(8): 020305
[9] HUANG Zeng-Guang**, FANG Wei, LU Hui-Qing, ** . Inflation and Singularity in Einstein–Cartan Theory[J]. Chin. Phys. Lett., 2011, 28(2): 020305
[10] Marina-Aura Dariescu**, Ciprian Dariescu, Ovidiu Buhucianu . Charged Scalars in Transient Stellar Electromagnetic Fields[J]. Chin. Phys. Lett., 2011, 28(1): 020305
[11] FENG Jun-Sheng**, LIU Zheng, GUO Jian-You . Bound and Resonant States of the Hulthén Potential Investigated by Using the Complex Scaling Method with the Oscillator Basis[J]. Chin. Phys. Lett., 2010, 27(11): 020305
[12] PAN Qi-Yuan, JING Ji-Liang. Late-Time Evolution of the Phantom Scalar Perturbation in the Background of a Spherically Symmetric Static Black Hole[J]. Chin. Phys. Lett., 2010, 27(6): 020305
[13] S. H. Kim. Identification of the Amplification Mechanism in the First Free-Electron Laser as Net Stimulated Free-Electron Two-Quantum Stark Emission[J]. Chin. Phys. Lett., 2009, 26(5): 020305
[14] S. H. Kim. Electric-Wiggler-Enhanced Three-Quantum Scattering and the Output Power Affected by this Scattering in a Free-Electron Laser[J]. Chin. Phys. Lett., 2009, 26(1): 020305
[15] M. R. Setare, O. Hatami. Exact Solutions of the Dirac Equation for an Electron in a Magnetic Field with Shape Invariant Method[J]. Chin. Phys. Lett., 2008, 25(11): 020305
Viewed
Full text


Abstract