Chin. Phys. Lett.  2013, Vol. 30 Issue (11): 118101    DOI: 10.1088/0256-307X/30/11/118101
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Fabrication and Photostability of Rhodamine-6G Gold Nanoparticle Doped Polymer Optical Fiber
Suneetha Sebastian**, Ajina C, C. P. G Vallabhan, V. P. N. Nampoori, P. Radhakrishnan, M. Kailasnath
International School of Photonics, Cochin University of Science and Technology, Cochin 22, India
Cite this article:   
Suneetha Sebastian, Ajina C, C. P. G Vallabhan et al  2013 Chin. Phys. Lett. 30 118101
Download: PDF(820KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We report on fabrication of a rhodamine-6G-gold-nanoparticle doped polymer optical fiber. The gold nanoparticle is synthesized directly into the monomer solution of the polymer using laser ablation synthesis in liquid. The size of the particle is found from the transmission electron microscopy. Rhodamine-6G is then mixed with the nanoparticle-monomer solution and optical characterization of the solution is investigated. It is found that there is a pronounced quenching of fluorescence of rhodamine 6G due to fluorescence resonance energy transfer. The monomer solution containing rhodamine 6G and gold nanoparticles is now made into a cylindrical rod and drawn into a polymer optical fiber. Further, the photostability is calculated with respect to the pure dye doped polymer optical fiber.
Received: 14 June 2013      Published: 30 November 2013
PACS:  81.05.Lg (Polymers and plastics; rubber; synthetic and natural fibers; organometallic and organic materials)  
  81.07.-b (Nanoscale materials and structures: fabrication and characterization)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/11/118101       OR      https://cpl.iphy.ac.cn/Y2013/V30/I11/118101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Suneetha Sebastian
Ajina C
C. P. G Vallabhan
V. P. N. Nampoori
P. Radhakrishnan
M. Kailasnath
[1] Arrue J et al 2011 Polymers 3 1162
[2] Kuzyk M G et al 1999 Chem. Phys. 245 533
[3] Kabashin A V et al 2003 J. Phys. Chem. B 107 4527
[4] Murphy C J et al 2005 J. Phys. Chem. B 109 13857
[5] Kang K A et al 2011 J. Nanobiotechnol. 9 16
[6] Karthikeyana B 2010 J. Appl. Phys. 108 084311
[7] Sen T et al 2007 Appl. Phys. Lett. 91 043104
[8] Popov O et al 2006 Appl. Phys. Lett. 89 191116
[9] Dong L et al 2012 Opt. Lett. 37 34
[10] Xie Z et al 2009 Opt. Commun. 282 439
[11] Aslan K et al 2005 Curr. Opin. Biotechnol. 16 55
[12] De M et al 2008 Adv. Mater. 20 4225
[13] Dong L et al 2011 J. Eur. Opt. Soc.-Rapid Publ. 6 11019
[14] Dong L et al 2012 IEEE J. Quantum Electron. 48 1010
[15] Pettingger B et al 2000 Electrochemistry 68 942
[16] Michaels A M et al 2000 J. Phys. Chem. B 104 11965
[17] Achammakurian et al 2002 Laser Chem. 20 99
[18] Rajesh M et al 2007 Appl. Opt. 46 106
[19] Lakowicz J R 2006 Principles of Fluorescence Spectroscopy (New York: Kluwer)
Related articles from Frontiers Journals
[1] Shahryar Malekie, Nahid Hajiloo. Comparative Study of Micro and Nano Size WO$_{3}$/E44 Epoxy Composite as Gamma Radiation Shielding Using MCNP and Experiment[J]. Chin. Phys. Lett., 2017, 34(10): 118101
[2] ZHOU Wei, LV Zhi-Hui, WANG Ya-Rui, LIU Ran, CHEN Wei-Ye, LI Xiao-Tong. Acoustic Response and Micro-Damage Mechanism of Fiber Composite Materials under Mode-II Delamination[J]. Chin. Phys. Lett., 2015, 32(4): 118101
[3] LIU Yuan, LIU Xiang-Xuan, WANG Xuan-Jun, WEN Wu. Electromagnetic and Microwave Absorption Properties of Fe Coating on SiC with Metal Organic Chemical Vapor Reaction[J]. Chin. Phys. Lett., 2014, 31(04): 118101
[4] LI Jian, RONG Ji-Li, ZHANG Yu-Ning, XU Tian-Fu, LI Bin. The Material Behavior and Fracture Mechanism of a Frangible Bullet Composite[J]. Chin. Phys. Lett., 2013, 30(7): 118101
[5] RONG Ji-Li, WANG Dan, WANG Xi, LI Jian, XU Tian-Fu, LU Ming-Ming, CAO Mao-Sheng. Dynamic Mechanical Behavior and Failure Mechanism of Polymer Composites Embedded with Tetraneedle-Shaped ZnO Whiskers[J]. Chin. Phys. Lett., 2013, 30(1): 118101
[6] DONG Yu, CHANG Shu-Quan, ZHANG Hong-Xu, REN Chao, KANG Bin, DAI Ming-Zhu, DAI Yao-Dong. Effects of WO3 Particle Size in WO3/Epoxy Resin Radiation Shielding Material[J]. Chin. Phys. Lett., 2012, 29(10): 118101
[7] CHENG Ting-Hai**, GAO Han, BAO Gang . Influence of Ultrasonic Vibrations on the Static Friction Characteristics of a Rubber/Aluminum Couple[J]. Chin. Phys. Lett., 2011, 28(12): 118101
[8] XUE Feng, YONG Hua-Dong, ZHOU You-He** . Bifurcation of a Swelling Gel with a Mechanical Load and Geometric Constraint[J]. Chin. Phys. Lett., 2011, 28(11): 118101
[9] TANG Cheng-Chun, CHEN Jun-Chi, LONG Yun-Ze**, YIN Hong-Xing, SUN Bin, ZHANG Hong-Di . Preparation of Curled Microfibers by Electrospinning with Tip Collector[J]. Chin. Phys. Lett., 2011, 28(5): 118101
[10] RONG Ji-Li, WANG Xi, CAO Mao-Sheng, XU Tian-Fu. Dynamic Fracture Toughness and Failure Mechanisms of ZnO Whiskers Secondary Reinforced Composites[J]. Chin. Phys. Lett., 2010, 27(8): 118101
[11] RONG Ji-Li, WANG Xi, CAO Mao-Sheng, WANG Da-Wei, ZHOU Wei, XU Tian-Fu. Dynamic Tensile Behavior and Fracture Mechanism of Polymer Composites Embedded with Tetraneedle-Shaped ZnO Nanowhiskers[J]. Chin. Phys. Lett., 2010, 27(6): 118101
[12] LONG Yun-Ze. Reply to ``Comment on `Electrical Conductivity and Current-Voltage Characteristics of Individual Conducting Polymer PEDOT Nanowires'''[J]. Chin. Phys. Lett., 2009, 26(5): 118101
[13] TONG Ke-Qin, XU Chun-Xian, WANG Qiong, GU Bao-Xiang, ZHENG Ke, YELi-Hua, LI Xin-Song. Photoluminescence of Electrospun Poly-Methyl-Methacrylate:Alq3 Composite Fibres[J]. Chin. Phys. Lett., 2008, 25(12): 118101
[14] LONG Yun-Ze, DUVAIL Jean-Luc, CHEN Zhao-Jia, JIN Ai-Zi, GU Chang-Zhi. Electrical Conductivity and Current--Voltage Characteristics of Individual Conducting Polymer PEDOT Nanowires[J]. Chin. Phys. Lett., 2008, 25(9): 118101
[15] TAN Jin-Shan, LONG Yun-Ze, LI Meng-Meng. Preparation of Aligned Polymer Micro/Nanofibres by Electrospinning[J]. Chin. Phys. Lett., 2008, 25(8): 118101
Viewed
Full text


Abstract