Chin. Phys. Lett.  2013, Vol. 30 Issue (11): 114401    DOI: 10.1088/0256-307X/30/11/114401
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Simulation of Radiative Transfer in Nonequilibrium Plasmas Containing N and O Species Based on the Approximate Collision-Radiative Method
HE Xin**, CHANG Sheng-Li, DAI Sui-An, YANG Jun-Cai
Department of Physics, National University of Defense Technology, Changsha 410073
Cite this article:   
HE Xin, CHANG Sheng-Li, DAI Sui-An et al  2013 Chin. Phys. Lett. 30 114401
Download: PDF(586KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract An approximate collision-radiative method is developed to calculate energy level populations of atoms and applied to simulate radiative transfer in a shock layer. Considering nonequilibrium plasmas with the electronic temperature below 20000 K, we introduce correction factors to the Saha–Boltzmann equation and simplify the master equation of the full collision-radiative model. Based on the method, the error of heat flux is smaller than 5% in a two-cell problem and smaller than 7% in the Stardust re-entry flow field compared with the correlated-k method. Furthermore, almost a factor of 2 is obtained in the improvement of computational efficiency compared with the nonequilibrium air radiation (NEQAIR) code. The results show that the present method is reliable and efficient.
Received: 24 April 2013      Published: 30 November 2013
PACS:  44.40.+a (Thermal radiation)  
  47.70.-n (Reactive and radiative flows)  
  52.25.-b (Plasma properties)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/11/114401       OR      https://cpl.iphy.ac.cn/Y2013/V30/I11/114401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
HE Xin
CHANG Sheng-Li
DAI Sui-An
YANG Jun-Cai
[1] Zel'dovich Y B and Raizer Y P 1980 Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Beijing: Science Press) pp 1–15 (in Chinese)
[2] Park C 1990 Nonequilibrium Hypersonic Aerothermodynamics (New York: Wiley Press) pp 1–372
[3] Park C 1993 J. Spacecraft Rockets 7 385
[4] Peng Z M et al 2011 Chin. Phys. Lett. 28 044703
[5] Carlson L A 1988 AIAA paper 88-2672
[6] Nicolet W E 1973 NASA CR-132470
[7] Park C 1985 NASA report 30780
[8] Moreau S et al 1992 AIAA paper 92-2968
[9] Whiting E E et al 1996 NASA report 1389
[10] Fujita K and Takashi A 1997 Inst. Space Astronautical Sci. report 669
[11] Surzhikov S T et al 2006 AIAA paper 2006-0586
[12] Shang J S and Surzhikov S T 2010 J. Spacecraft Rockets 47 806
[13] Surzhikov S T 2012 J. Heat Transfer 134 031002
[14] Sohn I et al 2010 J. Thermophys. Heat Transfer 24 623
[15] Olynick D R et al 1995 J. Thermophys. Heat Transfer 9 586
[16] Laux C O 1993 PhD Dissertation (Stanford: Stanford University)
[17] Bansal A, Modest M F and Levin D A 2009 AIAA paper 2009-1027
[18] Bansal A, Modest M F and Levin D A 2011 J. Quant. Spectrosc. Radiat. Transfer 112 1213
[19] Dong S K, Ma Y and Tan H P 2008 J. Thermophys. Heat Transfer 22 301
[20] Panesi M et al 2008 VKI Lecture Series RTO-EN-AVT-162
[21] Liu Y et al 2010 J. Spacecraft Rockets 47 741
[22] Shang J S and Surzhikov S T 2011 J. Spacecraft Rockets 48 385
[23] Starik A M, Titova N S and Arsentiev I V 2010 Plasma Sources Sci. Technol. 19 015007
Related articles from Frontiers Journals
[1] Yan-Ning Liu, Xiao-Long Weng, Peng Zhang, Wen-Xin Li, Yu Gong, Li Zhang, Tian-Cheng Han, Pei-Heng Zhou, and Long-Jiang Deng. Ultra-Broadband Infrared Metamaterial Absorber for Passive Radiative Cooling[J]. Chin. Phys. Lett., 2021, 38(3): 114401
[2] Rongqian Wang, Jincheng Lu, and Jian-Hua Jiang. Moderate-Temperature Near-Field Thermophotovoltaic Systems with Thin-Film InSb Cells[J]. Chin. Phys. Lett., 2021, 38(2): 114401
[3] HUANG Jin-Guo, XUAN Yi-Min, LI Qiang. Narrow-Band Thermal Radiation Based on Microcavity Resonant Effect[J]. Chin. Phys. Lett., 2014, 31(09): 114401
[4] ZHANG Rong-Pei, YU Xi-Jun, ZHU Jiang. Solution of Multimaterial Equilibrium Radiation Diffusion Problems by using the Discontinuous Galerkin Method[J]. Chin. Phys. Lett., 2012, 29(11): 114401
[5] FENG Chong, TANG Zhen-An, YU Jun. A Novel CMOS Device Capable of Measuring Near-Field Thermal Radiation[J]. Chin. Phys. Lett., 2012, 29(3): 114401
[6] LI Zhi-Gang**, TANG Da-Wei, LI Tie, DU Jing-Long, . A Hemispherical-Involute Cavity Receiver for Stirling Engine Powered by a Xenon Arc Solar Simulator[J]. Chin. Phys. Lett., 2011, 28(5): 114401
[7] ZHAO Yang**, SHANG Wan-Li, XIONG Gang, JIN Feng-Tao, HU Zhi-Min, WEI Min-Xi, YANG Guo-Hong, ZHANG Ji-Yan, YANG Jia-Min. Time-Resolved Measurement of Radiatively Heated Iron 2p-3d Transmission Spectra[J]. Chin. Phys. Lett., 2010, 27(11): 114401
[8] LIANG Xin-Gang, HAN Mao-Hua. Experimental Study on Coherence of Thermal Radiation of Thin Film Structures[J]. Chin. Phys. Lett., 2006, 23(5): 114401
[9] YAO Ai-Yun, HOU Wei, LI Hui-Qing, BI Yong, LIN Xue-Chun, GENG Ai-Cong, KONG Yu-Peng, CUI Da-Fu, XU Zu-Yan. Reducing Thermal Effect in End-Diode-Pumped Laser Crystal by Using a Novel Resonator[J]. Chin. Phys. Lett., 2005, 22(3): 114401
[10] YANG Jia-Min, XU Yan, DING Yao-Nan, DING Yong-Kun, JIANG Shao-En, ZHENG Zhi-Jian, MIAO Wen-Yong. Rosseland Mean Opacity of a High-Z Mixture Plasma[J]. Chin. Phys. Lett., 2003, 20(2): 114401
[11] YANG Jia-Min, XU Yan, DING Yao-Nan, LAI Dong-Xian, DING Yong-Kun, JIANG Shao-En, ZHENG Zhi-Jian, MIAO Wen-Yong. Radiation Heat Waves in Gold Plasma[J]. Chin. Phys. Lett., 2003, 20(1): 114401
Viewed
Full text


Abstract