Chin. Phys. Lett.  2013, Vol. 30 Issue (11): 114209    DOI: 10.1088/0256-307X/30/11/114209
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
A 300-MHz Bandwidth Balanced Homodyne Detector for Continuous Variable Quantum Key Distribution
HUANG Duan, FANG Jian, WANG Chao, HUANG Peng**, ZENG Gui-Hua**
State Key Laboratory of Advanced Optical Communication Systems and Networks, Shanghai Jiaotong University, Shanghai 200240
Cite this article:   
HUANG Duan, FANG Jian, WANG Chao et al  2013 Chin. Phys. Lett. 30 114209
Download: PDF(472KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract In Gaussian-modulated coherent-state quantum key distribution, the measurement of quadratures of coherent states is performed by using a homodyne detector. However, conventional detectors usually suffer from narrow bands. We present a method to design a high-speed shot-noise-limited balanced homodyne detector. A 300-MHz bandwidth detector is experimentally tested and the level of shot noise is 14 dB higher than the electronic noise. The results show that a detector with this method is potential to design a GHz bandwidth detector for continuous variable quantum key distribution at a low level of ratio of shot noise to electronic noise.
Received: 02 July 2013      Published: 30 November 2013
PACS:  42.50.Dv (Quantum state engineering and measurements)  
  03.67.Hk (Quantum communication)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/11/114209       OR      https://cpl.iphy.ac.cn/Y2013/V30/I11/114209
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
HUANG Duan
FANG Jian
WANG Chao
HUANG Peng
ZENG Gui-Hua
[1] Grosshans F and Grangier P 2002 Phys. Rev. Lett. 88 057902
[2] Grosshans F, Assche G V, Wenger J, Brouri R, Cerf N J and Grangier P 2003 Nat. Photon. 421 438
[3] Weedbrook C, Pirandola S, García-Patrón R, Cerf N J, Ralph T C, Shapiro J H and Lloyd S 2012 Rev. Mod. Phys. 84 621
[4] Qi B, Zhao Y, Ma X F, Lo H K and Qian L 2007 Phys. Rev. A 76 052323
[5] Jouguet P, Jacques S K, Leverrier A, Grangier P, Diamanti E 2013 Nat. Photon. 7 378
[6] Appel J, Hoffman D, Figueroa E and Lvovsky A I 2007 Phys. Rev. A 75 035802
[7] Yoshino K I, Aoki T and Furusawaa A 2007 Appl. Phys. Lett. 90 041111
[8] Kumar R, Barrios E, MacRae A, Cairns E, Huntington E H, Lvovsky A I 2012 Opt. Commun. 285 5259
[9] Okubo R, Hirano M, Zhang Y and Hirano T 2008 Opt. Lett. 33 001458
[10] Chi Y M, Qi B, Zhu W, Qian L, Lo H K, Youn S H, A I Lvovsky and Tian L 2011 New J. Phys. 13 013003
[11] Hirano T, Yamanaka H, Ashikaga M, Konishi T and Namiki R 2003 Phys. Rev. A 68 042331
[12] Hansen H, Aichele T, Hettich C, Lodahl P, Lvovsky A I, Mlynek J and Schiller S 2001 Opt. Lett. 26 1430
[13] Wang X Y, Bai Z L, Du P Y, Li Y M and Peng K C 2012 Chin. Phys. Lett. 29 124202
[14] Qi B, Zhao Y, Ma X F, Lo H K and Qian L 2007 Phys. Rev. A 75 052304
[15] Patrón R G and Cerf N J 2006 Phys. Rev. Lett. 97 190503
[16] Navascués M, Grosshans F and Acín A 2006 Phys. Rev. Lett. 97 190502
[17] Roumpos G and Cundiff S T 2013 J. Opt. Soc. Am. B 30 1303
Related articles from Frontiers Journals
[1] Qiuxin Zhang, Chenhao Zhu, Yuxin Wang, Liangyu Ding, Tingting Shi, Xiang Zhang, Shuaining Zhang, and Wei Zhang. Experimental Test of Contextuality Based on State Discrimination with a Single Qubit[J]. Chin. Phys. Lett., 2022, 39(8): 114209
[2] Lu-Ji Wang, Jia-Yi Lin, and Shengjun Wu. State Classification via a Random-Walk-Based Quantum Neural Network[J]. Chin. Phys. Lett., 2022, 39(5): 114209
[3] Shaowei Li, Daojin Fan, Ming Gong, Yangsen Ye, Xiawei Chen, Yulin Wu, Huijie Guan, Hui Deng, Hao Rong, He-Liang Huang, Chen Zha, Kai Yan, Shaojun Guo, Haoran Qian, Haibin Zhang, Fusheng Chen, Qingling Zhu, Youwei Zhao, Shiyu Wang, Chong Ying, Sirui Cao, Jiale Yu, Futian Liang, Yu Xu, Jin Lin, Cheng Guo, Lihua Sun, Na Li, Lianchen Han, Cheng-Zhi Peng, Xiaobo Zhu, and Jian-Wei Pan. Realization of Fast All-Microwave Controlled-Z Gates with a Tunable Coupler[J]. Chin. Phys. Lett., 2022, 39(3): 114209
[4] Ao-Lin Guo , Tao Tu, Le-Tian Zhu , and Chuan-Feng Li. High-Fidelity Geometric Gates with Single Ions Doped in Crystals[J]. Chin. Phys. Lett., 2021, 38(9): 114209
[5] Shaoxing Liu, Xuanying Lai, Ce Yang, and J. F. Chen. Towards High-Dimensional Entanglement in Path: Photon-Source Produced from a Two-Dimensional Atomic Cloud[J]. Chin. Phys. Lett., 2021, 38(8): 114209
[6] Bo Gong , Tao Tu, Ao-Lin Guo , Le-Tian Zhu , and Chuan-Feng Li. A Noise-Robust Pulse for Excitation Transfer in a Multi-Mode Quantum Memory[J]. Chin. Phys. Lett., 2021, 38(4): 114209
[7] Hongbin Liang, Jiancheng Pei, and Xiaoguang Wang. Enhancing Phase Sensitivity in Mach–Zehnder Interferometers for Arbitrary Input States[J]. Chin. Phys. Lett., 2020, 37(7): 114209
[8] Hao Cao, Wenping Ma, Ge Liu, Liangdong Lü, Zheng-Yuan Xue. Quantum Secure Multiparty Computation with Symmetric Boolean Functions[J]. Chin. Phys. Lett., 2020, 37(5): 114209
[9] Kun-Peng Wang, Jun Zhuang, Xiao-Dong He, Rui-Jun Guo, Cheng Sheng, Peng Xu, Min Liu, Jin Wang, Ming-Sheng Zhan. High-Fidelity Manipulation of the Quantized Motion of a Single Atom via Stern–Gerlach Splitting[J]. Chin. Phys. Lett., 2020, 37(4): 114209
[10] Xiao-Yu Zhao, Jun-Hui Huang, Zhi-Yao Zhuo, Yong-Zhou Xue, Kun Ding, Xiu-Ming Dou, Jian Liu, Bao-Quan Sun. Optical Properties of Atomic Defects in Hexagonal Boron Nitride Flakes under High Pressure[J]. Chin. Phys. Lett., 2020, 37(4): 114209
[11] Xing-Yu Zhu, Tao Tu, Ao-Lin Guo, Zong-Quan Zhou, Guang-Can Guo. Measurement of Spin Singlet-Triplet Qubit in Quantum Dots Using Superconducting Resonator[J]. Chin. Phys. Lett., 2020, 37(2): 114209
[12] Shuang-Shuang Fu, Shun-Long Luo. Quantifying Process Nonclassicality in Bosonic Fields[J]. Chin. Phys. Lett., 2019, 36(10): 114209
[13] Sheng-Li Zhang, Song Yang. Methods for Derivation of Density Matrix of Arbitrary Multi-Mode Gaussian States from Its Phase Space Representation[J]. Chin. Phys. Lett., 2019, 36(9): 114209
[14] Yao Chen, Fo-Liang Lin, Xi Liang, Nian-Quan Jiang. Programmable Quantum Processor with Quantum Dot Qubits[J]. Chin. Phys. Lett., 2019, 36(7): 114209
[15] Rui Liu, Ling-Jun Kong, Zhou-Xiang Wang, Yu Si, Wen-Rong Qi, Shuang-Yin Huang, Chenghou Tu, Yongnan Li, Hui-Tian Wang. Two-Photon Interference Constructed by Two Hong–Ou–Mandel Effects in One Mach-Zehnder Interferometer[J]. Chin. Phys. Lett., 2018, 35(9): 114209
Viewed
Full text


Abstract