Chin. Phys. Lett.  2013, Vol. 30 Issue (11): 110506    DOI: 10.1088/0256-307X/30/11/110506
GENERAL |
Dynamical Behaviors of a TiO2 Memristor Oscillator
WANG Guang-Yi**, HE Jie-Ling, YUAN Fang, PENG Cun-Jian
Electronics and Information School, Hangzhou Dianzi University, Hangzhou 310018
Cite this article:   
WANG Guang-Yi, HE Jie-Ling, YUAN Fang et al  2013 Chin. Phys. Lett. 30 110506
Download: PDF(1039KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We design a new chaotic oscillator based on the realistic model of the HP TiO2 memristor and Chua's circuit. Some basic dynamical behaviors of the oscillator, including equilibrium set, Lyapunov exponent spectrum and bifurcations with respect to various circuit parameters, are investigated theoretically and numerically. Chaotic attractors generated by the proposed oscillator are described with simulations and experiments, showing a good agreement. The main finding by analysis is that the proposed oscillator has no transient chaos and weak hyperchaos appears. Furthermore, its stability is insensitive to its initial values, thereby generating continuous and stable chaotic oscillation signals for chaos-based applications.
Received: 13 August 2013      Published: 30 November 2013
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  05.45.Jn (High-dimensional chaos)  
  05.45.Pq (Numerical simulations of chaotic systems)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/11/110506       OR      https://cpl.iphy.ac.cn/Y2013/V30/I11/110506
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Guang-Yi
HE Jie-Ling
YUAN Fang
PENG Cun-Jian
[1] Chua L O 1971 IEEE Trans. Circuit Theory 5 507
[2] Strukov D B, Snider G S, Stewart D R and Williams R S 2008 Nature 453 80
[3] Corinto F, Ascoli A and Gilli M 2011 IEEE Trans. Circuits Syst. 58 1323
[4] Itoh M and Chua L O 2008 Int. J. Bifurcation Chaos Appl. Sci. Eng. 18 3183
[5] Bao B C, Liu Z and Xu J P 2010 Electron. Lett. 46 228
[6] Bao B C, Liu Z and Xu J P 2010 Chin. Phys. B 19 030510
[7] Wang W L, Wang G Y and Tan D 2011 Fourth Int. Workshop Chaos-Fractals Theor. Appl. p 57
[8] Bharathwa M 2010 Int. J. Bifurcation Chaos Appl. Sci. Eng. 20 1335
[9] Bao B C, Xu J P and Liu Z 2010 Chin. Phys. Lett. 27 070504
[10] Bao B C, Xu J P and Zhou G H 2011 Chin. Phys. B 20 120502
[11] Muthuswamy B and Chua L O 2010 Int. J. Bifurcation Chaos Appl. Sci. Eng. 20 1567
[12] Fitch A L, Yu D S, Iu H H C and Sreeram V 2012 Int. J. Bifurcation Chaos Appl. Sci. Eng. 22 1250133
[13] Petras I 2010 IEEE Trans. Circuits Syst. 57 975
[14] Pershin Y V and Ventra M D 2010 Neural Netw. 23 881
[15] Qi A X, Zhang C L and Wang G Y 2011 Advanced Mater. Res. 383 6992
[16] Li Z J and Zeng Y C 2013 Chin. Phys. B 22 040502
[17] Pham V T, Buscarino A, Fortuna L and Frasca M 2013 Int. J. Bifurcation Chaos Appl. Sci. Eng. 23 1350073
[18] Buscarino A, Fortuna L, Frasca M and Gambuzza L V 2012 Chaos 22 023136
Related articles from Frontiers Journals
[1] Rui Zhang, Fan Ding, Xujin Yuan, and Mingji Chen. Influence of Spatial Correlation Function on Characteristics of Wideband Electromagnetic Wave Absorbers with Chaotic Surface[J]. Chin. Phys. Lett., 2022, 39(9): 110506
[2] Peng Gao, Zeyu Wu, Zhan-Ying Yang, and Wen-Li Yang. Reverse Rotation of Ring-Shaped Perturbation on Homogeneous Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2021, 38(9): 110506
[3] Jia-Chen Zhang , Wei-Kai Ren , and Ning-De Jin. Rescaled Range Permutation Entropy: A Method for Quantifying the Dynamical Complexity of Extreme Volatility in Chaotic Time Series[J]. Chin. Phys. Lett., 2020, 37(9): 110506
[4] Qianqian Wu, Xingyi Liu, Tengfei Jiao, Surajit Sen, and Decai Huang. Head-on Collision of Solitary Waves Described by the Toda Lattice Model in Granular Chain[J]. Chin. Phys. Lett., 2020, 37(7): 110506
[5] Yun-Cheng Liao, Bin Liu, Juan Liu, Jia Chen. Asymmetric and Single-Side Splitting of Dissipative Solitons in Complex Ginzburg–Landau Equations with an Asymmetric Wedge-Shaped Potential[J]. Chin. Phys. Lett., 2019, 36(1): 110506
[6] Ying Du, Jiaqi Liu, Shihui Fu. Information Transmitting and Cognition with a Spiking Neural Network Model[J]. Chin. Phys. Lett., 2018, 35(9): 110506
[7] Quan-Bao Ji, Zhuo-Qin Yang, Fang Han. Bifurcation Analysis and Transition Mechanism in a Modified Model of Ca$^{2+}$ Oscillations[J]. Chin. Phys. Lett., 2017, 34(8): 110506
[8] Ya-Tong Zhou, Yu Fan, Zi-Yi Chen, Jian-Cheng Sun. Multimodality Prediction of Chaotic Time Series with Sparse Hard-Cut EM Learning of the Gaussian Process Mixture Model[J]. Chin. Phys. Lett., 2017, 34(5): 110506
[9] Jing-Hui Li. Effect of Network Size on Collective Motion of Mean Field for a Globally Coupled Map with Disorder[J]. Chin. Phys. Lett., 2016, 33(12): 110506
[10] Jian-Cheng Sun. Complex Networks from Chaotic Time Series on Riemannian Manifold[J]. Chin. Phys. Lett., 2016, 33(10): 110506
[11] HUANG Feng, CHEN Han-Shuang, SHEN Chuan-Sheng. Phase Transitions of Majority-Vote Model on Modular Networks[J]. Chin. Phys. Lett., 2015, 32(11): 110506
[12] WANG Yu-Xin, ZHAI Ji-Quan, XU Wei-Wei, SUN Guo-Zhu, WU Pei-Heng. A New Quantity to Characterize Stochastic Resonance[J]. Chin. Phys. Lett., 2015, 32(09): 110506
[13] JI Quan-Bao, ZHOU Yi, YANG Zhuo-Qin, MENG Xiang-Ying. Bifurcation Scenarios of a Modified Mathematical Model for Intracellular Ca2+ Oscillations[J]. Chin. Phys. Lett., 2015, 32(5): 110506
[14] HAN Fang, WANG Zhi-Jie, FAN Hong, GONG Tao. Robust Synchronization in an E/I Network with Medium Synaptic Delay and High Level of Heterogeneity[J]. Chin. Phys. Lett., 2015, 32(4): 110506
[15] ZHAI Ji-Quan, LI Yong-Chao, SHI Jian-Xin, ZHOU Yu, LI Xiao-Hu, XU Wei-Wei, SUN Guo-Zhu, WU Pei-Heng. Dependence of Switching Current Distribution of a Current-Biased Josephson Junction on Microwave Frequency[J]. Chin. Phys. Lett., 2015, 32(4): 110506
Viewed
Full text


Abstract