Chin. Phys. Lett.  2013, Vol. 30 Issue (11): 110505    DOI: 10.1088/0256-307X/30/11/110505
GENERAL |
Kernel Least Mean Kurtosis Based Online Chaotic Time Series Prediction
QU Hua1, MA Wen-Tao1**, ZHAO Ji-Hong1,2, CHEN Ba-Dong3
1School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049
2School of Telecommunication and Information Engineering, Xi'an University of Posts and Telecommunications, Xi'an 710121
3Institute of Artificial Intelligence and Robotics, Xi'an Jiaotong University, Xi'an 710049
Cite this article:   
QU Hua, MA Wen-Tao, ZHAO Ji-Hong et al  2013 Chin. Phys. Lett. 30 110505
Download: PDF(508KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Based on the kernel methods and the nonlinear feature of chaotic time series, we develop a new algorithm called kernel least mean kurtosis (KLMK) by applying the kernel trick to the least mean kurtosis (LMK) algorithm, which maps the input data to a high dimensional feature space. The KLMK algorithm can overcome the shortcomings of the original LMK for nonlinear time series prediction, and it is easy to implement a sample by sample adaptation procedure. Theoretical analysis suggests that the KLMK algorithm may converge in a mean square sense in nonlinear chaotic time series prediction under certain conditions. Simulation results show that the performance of KLMK is better than those of LMK and the kernel least mean square (KLMS) algorithm.
Received: 11 July 2013      Published: 30 November 2013
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  05.45.Tp (Time series analysis)  
  05.40.Ca (Noise)  
  84.30.Vn (Filters)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/11/110505       OR      https://cpl.iphy.ac.cn/Y2013/V30/I11/110505
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
QU Hua
MA Wen-Tao
ZHAO Ji-Hong
CHEN Ba-Dong
[1] Li H C and Zhang J S 2005 Chin. Phys. Lett. 22 2776
[2] Wang X Y and Han M 2012 Acta Phys. Sin. 61 080507 (in Chinese)
[3] Liu W F, Pokharel P P and Jose C 2008 IEEE Trans. Signal Process. 56 334
[4] Wang X Y, Han M and Wang Y N 2013 Acta Phys. Sin. 62 050504 (in Chinese)
[5] Tanrikulu O and Constantinides A G 1994 Electron. Lett. 30 189
[6] Pazaitis D I and Constantinides A G 1999 IEEE Trans. Signal Process. 47 864
[7] Yoo J W and Park P 2012 Int. J. Inf. Electron. Eng. 2 940
[8] Zhao H 2008 IEEE ICC'08 p 515
[9] Mannor E Y and Meir S 2004 IEEE Trans. Signal Process. 52 2275
[10] Gil-Cacho J and Signoretto M 2013 IEEE Trans. Audio Speech Lang. Process. 21 1867
[11] Eksioglu E M and Tanc A K 2011 IEEE Signal Process. Lett. 18 470
[12] Chen B D et al 2012 IEEE Trans. Neural Netw. Learn. Syst. 23 22
[13] Burges C J C 1998 Data Min. Knowled. 2 121
[14] Walach E and Widrow B 1984 IEEE Trans. Inf. Theory 30 275
Related articles from Frontiers Journals
[1] Rui Zhang, Fan Ding, Xujin Yuan, and Mingji Chen. Influence of Spatial Correlation Function on Characteristics of Wideband Electromagnetic Wave Absorbers with Chaotic Surface[J]. Chin. Phys. Lett., 2022, 39(9): 110505
[2] Peng Gao, Zeyu Wu, Zhan-Ying Yang, and Wen-Li Yang. Reverse Rotation of Ring-Shaped Perturbation on Homogeneous Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2021, 38(9): 110505
[3] Jia-Chen Zhang , Wei-Kai Ren , and Ning-De Jin. Rescaled Range Permutation Entropy: A Method for Quantifying the Dynamical Complexity of Extreme Volatility in Chaotic Time Series[J]. Chin. Phys. Lett., 2020, 37(9): 110505
[4] Qianqian Wu, Xingyi Liu, Tengfei Jiao, Surajit Sen, and Decai Huang. Head-on Collision of Solitary Waves Described by the Toda Lattice Model in Granular Chain[J]. Chin. Phys. Lett., 2020, 37(7): 110505
[5] Yun-Cheng Liao, Bin Liu, Juan Liu, Jia Chen. Asymmetric and Single-Side Splitting of Dissipative Solitons in Complex Ginzburg–Landau Equations with an Asymmetric Wedge-Shaped Potential[J]. Chin. Phys. Lett., 2019, 36(1): 110505
[6] Ying Du, Jiaqi Liu, Shihui Fu. Information Transmitting and Cognition with a Spiking Neural Network Model[J]. Chin. Phys. Lett., 2018, 35(9): 110505
[7] Quan-Bao Ji, Zhuo-Qin Yang, Fang Han. Bifurcation Analysis and Transition Mechanism in a Modified Model of Ca$^{2+}$ Oscillations[J]. Chin. Phys. Lett., 2017, 34(8): 110505
[8] Ya-Tong Zhou, Yu Fan, Zi-Yi Chen, Jian-Cheng Sun. Multimodality Prediction of Chaotic Time Series with Sparse Hard-Cut EM Learning of the Gaussian Process Mixture Model[J]. Chin. Phys. Lett., 2017, 34(5): 110505
[9] Jing-Hui Li. Effect of Network Size on Collective Motion of Mean Field for a Globally Coupled Map with Disorder[J]. Chin. Phys. Lett., 2016, 33(12): 110505
[10] Jian-Cheng Sun. Complex Networks from Chaotic Time Series on Riemannian Manifold[J]. Chin. Phys. Lett., 2016, 33(10): 110505
[11] HUANG Feng, CHEN Han-Shuang, SHEN Chuan-Sheng. Phase Transitions of Majority-Vote Model on Modular Networks[J]. Chin. Phys. Lett., 2015, 32(11): 110505
[12] WANG Yu-Xin, ZHAI Ji-Quan, XU Wei-Wei, SUN Guo-Zhu, WU Pei-Heng. A New Quantity to Characterize Stochastic Resonance[J]. Chin. Phys. Lett., 2015, 32(09): 110505
[13] JI Quan-Bao, ZHOU Yi, YANG Zhuo-Qin, MENG Xiang-Ying. Bifurcation Scenarios of a Modified Mathematical Model for Intracellular Ca2+ Oscillations[J]. Chin. Phys. Lett., 2015, 32(5): 110505
[14] HAN Fang, WANG Zhi-Jie, FAN Hong, GONG Tao. Robust Synchronization in an E/I Network with Medium Synaptic Delay and High Level of Heterogeneity[J]. Chin. Phys. Lett., 2015, 32(4): 110505
[15] ZHAI Ji-Quan, LI Yong-Chao, SHI Jian-Xin, ZHOU Yu, LI Xiao-Hu, XU Wei-Wei, SUN Guo-Zhu, WU Pei-Heng. Dependence of Switching Current Distribution of a Current-Biased Josephson Junction on Microwave Frequency[J]. Chin. Phys. Lett., 2015, 32(4): 110505
Viewed
Full text


Abstract