Chin. Phys. Lett.  2013, Vol. 30 Issue (11): 110301    DOI: 10.1088/0256-307X/30/11/110301
GENERAL |
Analytical Arbitrary-Wave Solutions of the Deformed Hyperbolic Eckart Potential by the Nikiforov–Uvarov Method
ZHANG Min-Cang*
Zhi-Zhi Literature Information Resources Center, Shaanxi Normal University, Xi'an 710062
Cite this article:   
ZHANG Min-Cang 2013 Chin. Phys. Lett. 30 110301
Download: PDF(439KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The arbitrary ?-wave solutions to the Schr?dinger equation for the deformed hyperbolic Eckart potential is investigated analytically by using the Nikiforov–Uvarov method. The centrifugal term is treated with the improved Greene and Aldrich approximation scheme. The wave functions are expressed in terms of the Jacobi polynomial or the hypergeometric function. The discrete spectrum is obtained and it is shown that the deformed hyperbolic Eckart potential is a shape-invariant potential and the bound state energy is independent of the deformation parameter q.
Received: 02 July 2013      Published: 30 November 2013
PACS:  03.65.Ge (Solutions of wave equations: bound states)  
  02.30.Gp (Special functions)  
  03.65.Db (Functional analytical methods)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/11/110301       OR      https://cpl.iphy.ac.cn/Y2013/V30/I11/110301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Min-Cang
[1] Schiff L I 1955 Quantum Mechanics 3rd edn (New York: McGraw-Hill)
[2] Alhaidari A D 2010 Phys. Scr. 81 025013
[3] Infeld L and Hull T E 1951 Rev. Mod. Phys. 23 21
[4] Cooper F, Khare A and Sukhatme U 1995 Phys. Rep. 251 267
[5] Nikiforov A F and Uvarov V B 1988 Special Functions of Mathematical Physics (Basel: Birkhauser)
[6] Berkdemir C, Berkdemir A and Han J G 2006 Chem. Phys. Lett. 417 326
[7] Morse P M 1929 Phys. Rev. 34 57
[8] Rosen N and Morse P M 1932 Phys. Rev. 42 210
[9] Eckart C 1930 Phys. Rev. 35 1303
[10] Greene R L and Aldrich C 1976 Phys. Rev. A 14 2363
[11] Wei G F, Long C Y and Dong S H 2008 Phys. Lett. A 372 2592
[12] Jia C S, Liu J Y and Wang P Q 2008 Phys. Lett. A 372 4779
[13] Qiang W C and Dong S H 2007 Phys. Lett. A 368 13
[14] Bayrak O and Boztosun I 2006 J. Phys. A: Math. Gen. 39 6955
[15] Bayrak O, Kocak G and Boztosun I 2006 J. Phys. A: Math. Gen. 39 11521
[16] Serrano F A, G u X Y and Dong S H 2010 J. Math. Phys. 51 082103
[17] Huang-Fu G Q and Zhang M C 2013 Phys. Scr. 87 055006
[18] Suparmi A, Cari C and Yuliani H 2013 Adv. Phys. Theor. Appl. 16 64
[19] Weiss J J 1964 J. Chem. Phys. 41 1120
[20] Jia C S, Li Y, Sun Y, Liu J Y and Sun L T 2003 Phys. Lett. A 311 115
[21] E?rifes H, Demirhan D and Büyükkil? F 1999 Phys. Scr. 60 195
[22] Arai A 1991 J. Math. Anal. Appl. 158 63
[23] Grosche C 2005 J. Phys. A: Math. Gen. 38 2947
[24] Faridfathi G http://etd.lib.metu.edu.tr/upload/12606276/index.pdf and references therein
[25] Gradsgteyn I S and Ryzhik I M 1994 Tables Integrals, Series, and Products 5th edn (New York: Academic Press)
Related articles from Frontiers Journals
[1] Bo-Xing Cao  and Fu-Lin Zhang. The Analytic Eigenvalue Structure of the 1+1 Dirac Oscillator[J]. Chin. Phys. Lett., 2020, 37(9): 110301
[2] R. C. Woods. Comments on “Non-Relativistic Treatment of a Generalized Inverse Quadratic Yukawa Potential” [Chin. Phys. Lett. 34 (2017) 110301][J]. Chin. Phys. Lett., 2020, 37(8): 110301
[3] Wei Qi, Zi-Hao Li, Zhao-Xin Liang. Modulational Instability of Dipolar Bose–Einstein Condensates in Optical Lattices with Three-Body Interactions[J]. Chin. Phys. Lett., 2018, 35(1): 110301
[4] Hong-Hua Zhong, Zheng Zhou, Bo Zhu, Yong-Guan Ke, Chao-Hong Lee. Floquet Bound States in a Driven Two-Particle Bose–Hubbard Model with an Impurity[J]. Chin. Phys. Lett., 2017, 34(7): 110301
[5] Muhammad Adeel Ajaib. Hydrogen Atom and Equivalent Form of the Lévy-Leblond Equation[J]. Chin. Phys. Lett., 2017, 34(5): 110301
[6] Kang-Kang Ju, Cui-Xian Guo, Xiao-Yin Pan. Initial-Slip Term Effects on the Dissipation-Induced Transition of a Simple Harmonic Oscillator[J]. Chin. Phys. Lett., 2017, 34(1): 110301
[7] K. T. Chan, H. Zainuddin, K. A. M. Atan, A. A. Siddig. Computing Quantum Bound States on Triply Punctured Two-Sphere Surface[J]. Chin. Phys. Lett., 2016, 33(09): 110301
[8] Jie Gao, Min-Cang Zhang. Analytical Solutions to the $D$-Dimensional Schr?dinger Equation with the Eckart Potential[J]. Chin. Phys. Lett., 2016, 33(01): 110301
[9] LAI Meng-Yun, XIAO Duan-Liang, PAN Xiao-Yin. The Harmonic Potential Theorem for a Quantum System with Time-Dependent Effective Mass[J]. Chin. Phys. Lett., 2015, 32(11): 110301
[10] Diwaker, Aniruddha Chakraborty. Transfer Matrix Approach for Two-State Scattering Problem with Arbitrary Coupling[J]. Chin. Phys. Lett., 2015, 32(07): 110301
[11] ALSADI Khalid S. Eigen Spectra of the Dirac Equation for Deformed Woods–Saxon Potential via the Similarity Transformation[J]. Chin. Phys. Lett., 2014, 31(12): 110301
[12] QI Wei, LIANG Zhao-Xin, ZHANG Zhi-Dong. Collective Excitations of a Dipolar Bose–Einstein Condensate in an Anharmonic Trap[J]. Chin. Phys. Lett., 2013, 30(6): 110301
[13] CHEN Jin-Wang, YANG Tao, PAN Xiao-Yin. A New Proof for the Harmonic-Potential Theorem[J]. Chin. Phys. Lett., 2013, 30(2): 110301
[14] Sameer M. Ikhdair, Babatunde J. Falaye, Majid Hamzavi. Approximate Eigensolutions of the Deformed Woods–Saxon Potential via AIM[J]. Chin. Phys. Lett., 2013, 30(2): 110301
[15] CHAN Kar-Tim, Hishamuddin Zainuddin, Saeid Molladavoudi. Computation of Quantum Bound States on a Singly Punctured Two-Torus[J]. Chin. Phys. Lett., 2013, 30(1): 110301
Viewed
Full text


Abstract