Chin. Phys. Lett.  2013, Vol. 30 Issue (10): 103101    DOI: 10.1088/0256-307X/30/10/103101
ATOMIC AND MOLECULAR PHYSICS |
Role of the Permanent Dipole Moment in Coulomb Explosion
ZHANG Cai-Ping, MIAO Xiang-Yang**
College of Physics and Information Engineering, Shanxi Normal University, Linfen 041004
Cite this article:   
ZHANG Cai-Ping, MIAO Xiang-Yang 2013 Chin. Phys. Lett. 30 103101
Download: PDF(658KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract By numerically solving the non-Born–Oppenheimer time-dependent Schr?dinger equation in a few-cycle chirped laser field (5-fs, 800-nm), the effect of the permanent dipole moment on the Coulomb explosion is studied by the kinetic-energy-release spectra with the "virtual detector" method. The results indicate that with the effect of the permanent dipole moment, different multiphoton processes for heteronuclear and homonuclear diatomic molecular ions may take place when the wave packets transit from the ground state (1g) to the first excited state (2u), and then move along the excited potential curve, and finally charge-resonant enhanced ionization occurs at critical internuclear distance. As a result, despite the similar ionization probabilities for these two systems at higher vibrational level with larger chirp parameter β, the structure of the Coulomb explosion spectrum for the former is prominently different from that for the latter.
Received: 29 May 2013      Published: 21 November 2013
PACS:  31.15.xv (Molecular dynamics and other numerical methods)  
  79.77.+g (Coulomb explosion)  
  33.20.Tp (Vibrational analysis)  
  33.80.Rv (Multiphoton ionization and excitation to highly excited states (e.g., Rydberg states))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/10/103101       OR      https://cpl.iphy.ac.cn/Y2013/V30/I10/103101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Cai-Ping
MIAO Xiang-Yang
[1] Giusti-Suzor A, He X, Atabek O et al 1990 Phys. Rev. Lett. 64 515
[2] Zavriyev A, Bucksbaum P H, Squier J et al 1993 Phys. Rev. Lett. 70 1077
[3] Giusti-Suzor A, Mies F H, DiMauro L F et al 1995 J. Phys. B: At. Mol. Opt. Phys. 28 309
[4] Posthumus J H 2004 Rep. Prog. Phys. 67 623
[5] Ben-Itzhak I, Wang P Q, Xia J F et al 2005 Phys. Rev. Lett. 95 073002
[6] Hua J J and Esry B D 2009 J. Phys. B: At. Mol. Opt. Phys. 42 085601
[7] Ursrey D, Anis F and Esry B D 2012 Phys. Rev. A 85 023429
[8] Roudnev V, Esry B D and Ben-Itzhak I 2004 Phys. Rev. Lett. 93 163601
[9] Posthumus J H, Plumridge J, Frasinski L J et al 2000 J. Phys. B: At. Mol. Opt. Phys. 33 L563
[10] Frasinski L J, Posthumus J H, Plumridge J et al 1999 Phys. Rev. Lett. 83 3625
[11] Wang P Q, Sayler A M, Carnes K D et al 2005 J. Phys. B: At. Mol. Opt. Phys. 38 L251
[12] Paulus G G, Lindner F, Walther H et al 2003 Phys. Rev. Lett. 91 253004
[13] Feng L Q and Chu T S 2012 J. Chem. Phys. 136 054102
[14] Zhao J and Zhao Z X 2010 Chin. Phys. Lett. 27 063301
[15] Zheng Y H, Zeng Z N, Li R X et al 2012 Phys. Rev. A 85 023410
[16] Chelkowski S, Bredtmann T and Bandrauk A D 2012 Phys. Rev. A 85 033404
[17] Zuo T and Bandrauk A D 1995 Phys. Rev. A 52 R2511
[18] Zhu J Y, Liu B K, Wang Y Q et al 2010 Chin. Phys. Lett. 27 093301
[19] Lu R F, Xiao C Y, Deng K M et al 2011 Chem. Phys. 382 88
[20] McKenna J, Sayler A M, Anis F et al 2008 Phys. Rev. Lett. 100 133001
[21] Lin J T and Jiang T F 2000 Phys. Rev. A 63 013408
[22] Liu Z T, Yuan K J, Shu C C et al 2010 J. Phys. B: At. Mol. Opt. Phys. 43 055601
[23] McKenna J, Sayler A M, Gaire B et al 2009 J. Phys. B: At. Mol. Opt. Phys. 42 121003
[24] Znakovskaya I, von den Hoff P, Marcus G et al 2012 Phys. Rev. Lett. 108 063002
[25] McKenna J, Anis F, Sayler A M et al 2012 Phys. Rev. A 85 023405
[26] Yang D and Cong S L 2011 Phys. Rev. A 84 013424
[27] Prabhudesai V S, Lev U, Natan A et al 2010 Phys. Rev. A 81 023401
[28] Natan A, Lev U, Prabhudesai V S et al 2012 Phys. Rev. A 86 043418
[29] Benis E P, Bakarezos M, Papadogiannis N A et al 2012 Phys. Rev. A 86 043428
[30] Wu Y and Yang X X 2007 Phys. Rev. Lett. 98 013601
[31] Wu Y and Yang X X 2007 Phys. Rev. A 76 013832
[32] S H I H T and M I A O X Y 2013 Chin. Phys. Lett. 30 063101
[33] Hu J, Wang M S, Han K L et al 2006 Phys. Rev. A 74 063417
[34] Chu T S, Zhang Y, Han K L 2006 Int. Rev. Phys. Chem. 25 201
[35] He H X, Lu R F, Zhang P Y et al 2012 J. Chem. Phys. 136 024311
[36] He H X, Lu R F, Zhang P Y et al 2011 Phys. Rev. A 84 033418
[37] He H X, Lu R F, Zhang P Y et al 2012 J. Phys. B: At. Mol. Opt. Phys. 45 085103
[38] Feuerstein B and Thumm U 2003 J. Phys. B: At. Mol. Opt. Phys. 36 707
[39] Feuerstein B and Thumm U 2003 Phys. Rev. A 67 043405
Related articles from Frontiers Journals
[1] Fuxin Wang, Chao Zhang, Yanmei Yang, Yuanyuan Qu, Yong-Qiang Li, Baoyuan Man, and Weifeng Li. Tuning the Water Desalination Performance of Graphenic Layered Nanomaterials by Element Doping and Inter-Layer Spacing[J]. Chin. Phys. Lett., 2020, 37(11): 103101
[2] Nan Zhang, Ming-Ru Li, Hui-Ting Xu, and Feng-Shou Zhang. Polymorphism and Flexibility of DNA in Alcohols[J]. Chin. Phys. Lett., 2020, 37(8): 103101
[3] Lin Zhuang, Qijun Ye, Ding Pan, Xin-Zheng Li. Discriminating High-Pressure Water Phases Using Rare-Event Determined Ionic Dynamical Properties[J]. Chin. Phys. Lett., 2020, 37(4): 103101
[4] Oğuz Gürbulak, Emine Cebe. Molecular Dynamics Simulation of 4-N-Hexyl-4'-Cyanobiphenyl Adsorbed at the Air-Water Interface[J]. Chin. Phys. Lett., 2018, 35(4): 103101
[5] Zi-Qian Huang, Rong-Yao Yang, Wei-Zhou Jiang, Qi-Lin Zhang. Heating of Nanosized Liquid Water in High-Intensity Terahertz Pulses[J]. Chin. Phys. Lett., 2016, 33(01): 103101
[6] MA Wang-Guo, ZHANG Meng, NIE Xue-Chuan, WANG Chun-Lei, FANG Hai-Ping, HE Meng-Dong, ZHANG Li-Juan. Controllable Nucleation of Nanobubbles at a Modified Graphene Surface[J]. Chin. Phys. Lett., 2015, 32(4): 103101
[7] LI Ya-Min, CHE Ru-Xin, LI Ying, DONG Bin. Theoretical Study of the H+ClO Reaction[J]. Chin. Phys. Lett., 2013, 30(11): 103101
[8] WU Tian-Yu, PENG Meng-Meng, LUO Xiao-Feng, LAI Wen-Sheng. Influence of Temperature and Stress on Near-Surface Cascades in Alpha-Zirconium Revealed by Molecular Dynamics Simulation[J]. Chin. Phys. Lett., 2013, 30(9): 103101
[9] ZHANG Yue-Xia, LIU Qiang, SHI Ting-Yun. The Hydrogen Molecular Ion in Strong Fields Using the B-Spline Method[J]. Chin. Phys. Lett., 2013, 30(4): 103101
[10] XI Wen-Hui, LI Wen-Fei, and WANG Wei. Modulation of Amyloid-β Conformation by Charge State of N-Terminal Disordered Region[J]. Chin. Phys. Lett., 2012, 29(8): 103101
[11] ZHAO Li, SUN Ping, LIU Chao-Zhuo* . Quasi-Classical Trajectory Calculations of Reaction Stereodynamics of H+OH( v = 0, j = 0)H2+O(3 P )[J]. Chin. Phys. Lett., 2011, 28(8): 103101
[12] WANG Tao, YUE Xian-Fang . QCT Calculations of Reactions of F+LiHLiF+H and F+LiDLiF+D: Product Polarization and Isotope Effects[J]. Chin. Phys. Lett., 2011, 28(2): 103101
[13] XIAO Jing, YANG Chuan-Lu**, WANG Mei-Shan, MA Xiao-Guang . Collision Energies Effect on Stereodynamics for Ne+H2+→NeH++H Reaction[J]. Chin. Phys. Lett., 2011, 28(1): 103101
[14] ZENG Li, GUO Hong-Kai, ZUO Guang-Hong, WAN Rong-Zheng, FANGHai-Ping,. Water Transport through Multinanopores Membranes[J]. Chin. Phys. Lett., 2009, 26(3): 103101
[15] ZHANG Yue-Xia, KANG Shuai, SHI Ting-Yun. Accurate One-Centre Method for Hydrogen Molecule Ions in Strong Magnetic Field[J]. Chin. Phys. Lett., 2008, 25(11): 103101
Viewed
Full text


Abstract