Chin. Phys. Lett.  2013, Vol. 30 Issue (1): 018501    DOI: 10.1088/0256-307X/30/1/018501
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
A SQUID Bootstrap Circuit with a Large Parameter Tolerance
ZHANG Guo-Feng1,2,3, ZHANG Yi2,3**, Hans-Joachim Krause2,3, KONG Xiang-Yan1,3, Andreas Offenhäusser2,3, XIE Xiao-Ming1,3
1State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences (CAS), Shanghai 200050
2Peter Grünberg Institute (PGI-8), Forschungszentrum Jülich (FZJ), D-52425, Jülich, Germany
3Joint Research Laboratory on Superconductivity and Bioelectronics, Collaboration between CAS-Shanghai & FZJ, Shanghai 200050
Cite this article:   
ZHANG Guo-Feng, ZHANG Yi, Hans-Joachim Krause et al  2013 Chin. Phys. Lett. 30 018501
Download: PDF(609KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The voltage biased (SQUID) bootstrap circuit (SBC) was recently introduced as an effective means to reduce the preamplifier noise contribution. We analyze the tolerances of the SBC noise suppression performance to spreads in SQUID and SBC circuit parameters. It is found that the tolerance to spread mainly caused by the integrated circuit fabrication process could be extended by a one-time adjustable current feedback. A helium-cooled niobium SQUID with a loop inductance of 350 pH is employed to experimentally verify the analysis. From this work, design criteria for fully integrated SBC devices with a high yield can be derived.
Received: 05 November 2012      Published: 04 March 2013
PACS:  85.25.Dq (Superconducting quantum interference devices (SQUIDs))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/1/018501       OR      https://cpl.iphy.ac.cn/Y2013/V30/I1/018501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Guo-Feng
ZHANG Yi
Hans-Joachim Krause
KONG Xiang-Yan
Andreas Offenh?usser
XIE Xiao-Ming
[1] Drung D, Cantor R, Peters M, Scheer H J and Koch H 1990 Appl. Phys. Lett. 57 406
[2] Kiviranta M and Sepp? H 1995 IEEE Trans. Appl. Supercond. 5 2146
[3] Xie X, Zhang Y, Wang H, Wang Y, Mück M, Dong H, Krause H J, Braginski A I, Offenh?usser A and Jiang M 2010 Supercond. Sci. Technol. 23 065016
[4] Wang Y, Xie X, Dong H, Zhang G, Wang H, Zhang Y, Mück M, Krause H J, Braginski A I, Offenh?sser A and Jiang M 2011 IEEE Trans. Appl. Supercond. 21 354
[5] Zhang G, Zhang Y, Dong H, Krause H J, Xie X, Braginski A I, Offenh?usser A and Jiang M 2011 Supercond. Sci. Technol. 24 065023
[6] Zhang Y, Zhang G, Wang H, Wang Y, Dong H, Xie X, Mück M, Krause H J, Braginski A I, Offenh?sser A and Jiang M 2011 IEEE Trans. Appl. Supercond. 21 501
[7] Zhang G, Zhang Y, Dong H, Krause H J, Xie X, Braginski A I, Offenh?usser A and Jiang M 2012 Supercond. Sci. Technol. 25 015006
Related articles from Frontiers Journals
[1] Ying Yang, Ze-Hua Tian, Ji-Liang Jing. Analogue Soliton with Variable Mass in Super-Conducting Quantum Interference Devices[J]. Chin. Phys. Lett., 2020, 37(4): 018501
[2] Hao Li, Jian-She Liu, Han Cai, Ying-Shan Zhang, Qi-Chun Liu, Gang Li, Wei Chen. True Random Number Generator Realized by Extracting Entropy from a Negative-Inductance Superconducting Quantum Interference Device[J]. Chin. Phys. Lett., 2017, 34(1): 018501
[3] Chao-Quan Wang, Jian Zou, Zhi-Ming Zhang. Generating Squeezed States of Nanomechanical Resonator via a Flux Qubit in a Hybrid System[J]. Chin. Phys. Lett., 2016, 33(02): 018501
[4] ZHAO Hu, LI Tie-Fu, LIU Jian-She, CHEN Wei. Charge-Related SQUID and Tunable Phase-Slip Flux Qubit[J]. Chin. Phys. Lett., 2014, 31(03): 018501
[5] QIU Long-Qing, LIU Chao, DONG Hui, XU Lu, ZHANG Yi, Hans-Joachim Krause, XIE Xiao-Ming, Andreas Offenhäusser. Time-Domain Frequency Correction Method for Averaging Low-Field NMR Signals Acquired in Urban Laboratory Environment[J]. Chin. Phys. Lett., 2012, 29(10): 018501
[6] GAO Gui-Long,SONG Fu-Quan,HUANG Shou-Sheng,WANG Yan-Wei,FAN Zhi-Qiang,YUAN Xian-Zhang,JIANG Nian-Quan**. Producing and Distinguishing χ-Type Four-Qubit States in Flux Qubits[J]. Chin. Phys. Lett., 2012, 29(4): 018501
[7] ZHANG Feng-Yang, PEI Pei, LI Chong**, SONG He-Shan** . Manipulating Quantum State in Superconducting Dressed-State Systems[J]. Chin. Phys. Lett., 2011, 28(12): 018501
[8] ZHANG Shu-Lin, LIU Yang-Bo, LIU Ming, WANG Yong-Liang, KONG Xiang-Yan, XIE Xiao-Ming** . A Room-Temperature Pre-calibration Procedure for Gradiometer Sifting[J]. Chin. Phys. Lett., 2011, 28(3): 018501
[9] Saburo Tanaka, Tomohiro Akai, Makoto Takemoto, Yoshimi Hatsukade, Takeyoshi Ohtani, Yoshio Ikeda, Shuichi Suzuki. Metallic Contaminant Detection using a High-Temperature Superconducting Quantum Interference Devices Gradiometer[J]. Chin. Phys. Lett., 2010, 27(8): 018501
[10] DONG Hui, , ZHANG Yi, KRAUSE Hans-Joachim, XIE Xiao-Ming. Effect of HTS Superconductors on Homogeneity of Measurement Field in Low Field Nuclear Magnetic Resonance Detection[J]. Chin. Phys. Lett., 2010, 27(8): 018501
[11] LIU Dang-Ting, TIAN Ye, REN Yu-Feng, YU Hong-Wei, ZHANG Li-Hua, YANGQian-Sheng, CHEN Geng-Hua. A Novel Filter Scheme of Data Processing for SQUID-Based Magnetocardiogram[J]. Chin. Phys. Lett., 2008, 25(7): 018501
[12] ZHENG An-Shou, SHEN Xiao-Fang, LIU Ji-Bing, BI Jie, DU Qiu-Jiao,. Preparation of W State with Superconducting Quantum-Interference Devices in a Cavity via Adiabatic Passage[J]. Chin. Phys. Lett., 2008, 25(4): 018501
[13] MA Chi, ZHANG Shi-Jun, HE Juan, YE Liu. Implementation of a Controlled-NOT Gate Using Superconducting Quantum Interference Devices[J]. Chin. Phys. Lett., 2008, 25(2): 018501
[14] LI Bin-Bin, SHEN Hong-Lie, ZHANG Rong, XIU Xiang-Qiang, XIE Zhi. Structural and Magnetic Properties of Codoped ZnO based Diluted Magnetic Semiconductors[J]. Chin. Phys. Lett., 2007, 24(12): 018501
[15] ZHENG An-Shou, WAN Zhen-Zhu, BI Jie. Realization of Greenberg--Horne--Zeilinger (GHZ) and W Entangled States with Multiple Superconducting Quantum-Interference Device Qubits in Cavity QED[J]. Chin. Phys. Lett., 2006, 23(12): 018501
Viewed
Full text


Abstract