CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Current Density-Sensitive Welding of a Semiconductor Nanowire to a Metal Electrode |
TAN Yu1, WANG Yan-Guo2** |
1 Science College, Hunan Agricultural University, Changsha 410128 2Beijing Laboratory of Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, P. O. Box 603, Beijing 100190
|
|
Cite this article: |
TAN Yu, WANG Yan-Guo 2013 Chin. Phys. Lett. 30 017901 |
|
|
Abstract In situ welding of a single ZnSe nanowire (NW) to an Au electrode has been successfully achieved by means of current-induced Joule heating. The parameter governing the welding of semiconductor NW to the metal electrode is highly dominated by the current density at the Au-ZnSe NW (M-S) contact because current density at the M-S contact can change the temperature profile along the NW. The self-heating behaviors of the Au-ZnSe NW-Au (M-S-M) nanostructure can be changed from the electrical failure of the ZnSe NW to the melting of the Au electrode localized at the M-S contact when the current density at the M-S junction was adjusted to be larger than in the NW. Consequently, the self-welding is the current density-sensitive and controllable since the current density at the M-S contact can be controlled by adjusting the contact area between the NW and metal electrode. This controlled self-welding may have potential applications in the construction of a complex nanostructure and improvement of the thermal stability of the M-S contact as well as the enhanced performance of the nanodevices based on the M-S-M nanostructure.
|
|
Received: 23 August 2012
Published: 04 March 2013
|
|
PACS: |
79.70.+q
|
(Field emission, ionization, evaporation, and desorption)
|
|
68.37.Hk
|
(Scanning electron microscopy (SEM) (including EBIC))
|
|
81.07.De
|
(Nanotubes)
|
|
|
|
|
[1] Tohmyoh H and Fukui S 2009 Phys. Rev. B 80 155403 [2] Fukui S and Tohmyoh H 2011 Jpn. J. Appl. Phys. 50 057201 [3] Wu Y Y and Yang P D 2001 Adv. Mater. 13 520 [4] Hirayama H, Kawamoto Y, Ohsima Y and Takayanagi K 2001 Appl. Phys. Lett. 79 1169 [5] Jin C, Suenaga K and Iijima S 2008 Nat. Nanotechnol. 3 17 [6] Wang Y G, Wang T H, Lin X W and Dravid V P 2006 Nanotechnol. 17 6011 [7] Wang M S, Wang J Y, Chen Q and Peng L M 2005 Adv. Funct. Mater. 15 1852 [8] Huang J X and Kaner R B 2004 Nat. Mater. 3 783 [9] Kim S J and Jang D J 2005 Appl. Phys. Lett. 86 033112 [10] Xu S Y, Tian M L, Wang J G, Xu H, Redwing J M and Chan M H W 2005 Small 1 1221 [11] Peng Y, Cullis T and Inkson B 2009 Nano Lett. 9 91 [12] Lu Y, Huang J Y, Wang C, Sun S, Lou J 2010 Nat. Nanotechnol. 5 218 [13] Hirayama H, Kawamoto Y, Ohshima Y and Takayanagi K 2001 Appl. Phys. Lett. 79 1169 [14] Westover T, Jones R, Huang J Y, Wang G, Lai E and Talin A A 2009 Nano Lett. 9 257 [15] Xu Z, Golberg D, Bando Y 2009 Nano Lett. 9 2251 [16] Wang Y G, Zeng Y P, Qu B H and Zhang Q L 2011 J. Appl. Phys. 109 104311 [17] Nie A M, Liu J B, Dong C Z and Wang H T 2011 Nanotechnology 22 405703 [18] Zhang Q, Qi J, Yang Y, Huang Y, Li X and Zhang Y 2010 Appl. Phys. Lett. 96 253112 [19] Zhao J, Sun H Y, Dai S, Wang Y and Zhu J 2011 Nano Lett. 11 4647 [20] Bakan G, Cywar A, Silva H and Gokirmak A 2009 Appl. Phys. Lett. 94 251910 [21] Zeng Y P, Wang Y G, Qu B H and Yu H C 2012 Chin. Phys. Lett. 29 088105 [22] Kaye G W C and Laby T H 1995 Tables of Physical and Chemical Constants (London: Longman) [23] Chiras S and Clarke D R 2000 J. Appl. Phys. 88 6302 [24] Chen Y C, Zwolak M and Di Ventra M 2003 Nano Lett. 3 1691 [25] Martienssen W and Warlimont H 2005 Handbook of Condensed Matter and Materials Data (Berlin: Springer) [26] Tan Y and Wang Y G 2013 Chin. Phys. Lett. 30 017902 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|