Chin. Phys. Lett.  2013, Vol. 30 Issue (1): 016202    DOI: 10.1088/0256-307X/30/1/016202
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Temperature Effects of Electrorheological Fluids Based on One-Dimensional Calcium and Titanium Precipitate
YAN Ren-Jie1, WU Jing-Hua2, LI Cong1, XU Gao-Jie2, ZHOU Lu-Wei1**
1State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai 200433
2Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201
Cite this article:   
YAN Ren-Jie, WU Jing-Hua, LI Cong et al  2013 Chin. Phys. Lett. 30 016202
Download: PDF(806KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Electrorheological (ER) fluids based on nanorods of calcium and titanium precipitate (CTP) possess good ER performance. We investigate the shear stress and leaking current of CTP suspension from ?15 to 230°C, and it is found that the ER effect increases at up to 150°C. Dielectric spectra of the CTP suspension at different temperatures indicate that the change of interface polarization can perfectly interpret the increment of ER effect and leaking current. The Fourier transform infrared (FTIR) spectroscopy test shows that some compositions of the CTP particles decompose at temperature of 180°C, which leads to a consequential decrease of ER effect. Through thermogravimetric and differential thermal analyses (TG-DTA), we find that TiOC2O4(H2O)2 plays a key role in the dielectric property and ER effect of CTP suspension.
Received: 24 September 2012      Published: 04 March 2013
PACS:  62.25.-g (Mechanical properties of nanoscale systems)  
  77.22.Gm (Dielectric loss and relaxation)  
  77.22.Ej (Polarization and depolarization)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/1/016202       OR      https://cpl.iphy.ac.cn/Y2013/V30/I1/016202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YAN Ren-Jie
WU Jing-Hua
LI Cong
XU Gao-Jie
ZHOU Lu-Wei
[1] Zhang M L et al 2009 Chin. Phys. Lett. 26 048301
[2] Yin J B and Zhao X P 2001 Chin. Phys. Lett. 18 1144
[3] Lu K Q et al 2006 Chin. Phys. 15 2476
[4] Guo J Q et al 2009 Chin. Phys. Lett. 26 044102
[5] Li C et al 2012 Soft Matter 8 5250
[6] Halsey T C 1992 Science 258 761
[7] Winslow W M 1949 J. Appl. Phys. 20 1137
[8] Gulley G L and Tao R 1997 Phys. Rev. E 56 4328
[9] Hao T 2002 Adv. Colloid Interf. Sci. 97 1
[10] Wu C W and Conrad H 1998 J. Appl. Phys. 83 3880
[11] Hao T et al 1996 J. Colloid Interf. Sci. 184 542
[12] Eshchenko L S et al 2009 J. Eng. Phys. Thermophys. 82 743
[13] Yin J B et al 2011 Smart Mater. Struct. 20 015002
[14] Wen W J et al 2003 Nat. Mater. 2 727
[15] Wei J H et al 2008 J. Sol-Gel Sci. Tech. 47 311
[16] Xu L et al 2008 J. Mater. Res. 23 409
[17] Zhang W B and Cao Z X 2011 Poster Academic Confernce, CPS (Hangzhou, China)
[18] Cheng Y C et al 2010 ACS Appl. Mater. Interf. 2 621
[19] Dutcher B et al 2011 Separ. Purif. Tech. 80 364
[20] Potdar H S et al 1999 Mater. Chem. Phys. 58 121
[21] Chang H et al 2001 Thermochim. Acta 374 45
[22] Block H and Kelly J P 1988 J. Phys. D: Appl. Phys. 21 1661
[23] Hao T et al 1999 Langmuir 15 918
Related articles from Frontiers Journals
[1] Xiang-Yue Liu, Hong Zhang, Xin-Lu Cheng. Interaction between Dislocation and Twinning Boundary under Incremental Loading in $\alpha$-Titanium[J]. Chin. Phys. Lett., 2018, 35(11): 016202
[2] Han Zhou, Fu-Zeng Zhou, Yong-Qing Shen, Bin Liao, Jing-Jing Yu, Xu Zhang. Effect of Bias Voltage on Microstructure and Mechanical Properties of Nanocomposite ZrCN Films Deposited by Filtered Cathodic Vacuum Arc[J]. Chin. Phys. Lett., 2018, 35(6): 016202
[3] De-Min Zhao, Jian-Lin Liu. New Insights on the Deflection and Internal Forces of a Bending Nanobeam[J]. Chin. Phys. Lett., 2017, 34(9): 016202
[4] XIANG Lang, WU Jian, MA Shuang-Ying, WANG Fang, ZHANG Kai-Wang. Nanoindentation Models of Monolayer Graphene and Graphyne under Point Load Pattern Studied by Molecular Dynamics[J]. Chin. Phys. Lett., 2015, 32(09): 016202
[5] MENG Chao, HUANG Pu, ZHOU Jing-Wei, DUAN Chang-Kui, DU Jiang-Feng. Thermally Controllable Break Junctions with High Bandwidths and High Integrabilities[J]. Chin. Phys. Lett., 2015, 32(07): 016202
[6] ZHOU Yu-Nong, HUANG Gan-Yun. Buckling of Elastic Thin Films on Compliant Substrates for Determination of Surface Parameters[J]. Chin. Phys. Lett., 2014, 31(11): 016202
[7] Bumned Soodchomshom. Pseudo Spin Torque Induced by Strain Field of Dirac Fermions in Graphene[J]. Chin. Phys. Lett., 2013, 30(12): 016202
[8] WANG Wei, QIAN Jian-Qiang, LI Ying-Zi, CHEN Zhu-Li. Dual-Frequency Atomic Force Microscopy Imaging Method and Experiment Based on Commercial AFM Platform[J]. Chin. Phys. Lett., 2013, 30(6): 016202
[9] LIU Jian-Lin**, XIA Re, ZHOU Yue-Ting . Stiction of a Nano-Beam with Surface Effect[J]. Chin. Phys. Lett., 2011, 28(11): 016202
[10] GU Fang, ZHANG Jia-Hong**, XU Lin-Hua, LIU Qing-Quan, LI Min . Influence of Surface Effects on the Elastic Properties of Silicon Nanowires with Different Cross Sections[J]. Chin. Phys. Lett., 2011, 28(10): 016202
[11] TAN Hao, WANG Hai-Ying**, XIA Meng-Fen, KE Fu-Jiu, BAI Yi-Long . Molecule Statistical Thermodynamics Simulation of Nanoindentation of Single Crystal Copper with EAM Potential[J]. Chin. Phys. Lett., 2011, 28(4): 016202
[12] LI He, YANG Zhou, ZHANG Yi-Min, WEN Bang-Chun. Deflections of Nanowires with Consideration of Surface Effects[J]. Chin. Phys. Lett., 2010, 27(12): 016202
[13] HAN Mei, ZHANG Yong, ZHENG Hong-Bo. Effect of Uniaxial Strain on Band Gap of Armchair-Edge Graphene Nanoribbons[J]. Chin. Phys. Lett., 2010, 27(3): 016202
[14] GUAN Zhi-Qiang, LUO Gang, MONTELIUS Lars, XU Hong-Xing,. Electromechanical Behavior of Interdigitated SiO2 Cantilever Arrays[J]. Chin. Phys. Lett., 2010, 27(2): 016202
[15] TANG Yi-Zhe, ZHENG Zhi-Jun, XIA Meng-Fen, BAI Yi-Long. A Unified Guide to Two Opposite Size Effects in Nano Elastic Materials[J]. Chin. Phys. Lett., 2009, 26(12): 016202
Viewed
Full text


Abstract