Chin. Phys. Lett.  2013, Vol. 30 Issue (1): 014205    DOI: 10.1088/0256-307X/30/1/014205
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Principal State Analysis for a Compact in-Line Fiber Polarization Controller
LI Zheng-Yong**, WU Chong-Qing, WANG Zhi-Hao, QIN Tao, WANG Yi-Xu
Key Lab of Education Ministry on Luminescence and Optical Information Technology and Institute of Optical Information, Beijing Jiaotong University, Beijing 100044
Cite this article:   
LI Zheng-Yong, WU Chong-Qing, WANG Zhi-Hao et al  2013 Chin. Phys. Lett. 30 014205
Download: PDF(562KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A compact in-line fiber-based polarization controller (FPC) made of a rotatable fiber squeezer is investigated in detail with the Mueller matrix model established based on the generalized principal state of polarization (PSP). The PSP caused by the fiber squeezing is in the equator plane, which turns around S3 axis on the Poincaré sphere when rotating the squeezer. Subsequently, a programmable polarization control method is proposed to realize the polarization conversion between arbitrary polarization states, in which only two parameters of phase shift and rotation angle need to be controlled. This type of FPC, which has a highly compact structure, lower insertion loss, and can be directly embedded into any fiber devices without any extra delay, will be an ideal PC for high-speed optical communication and all-optical signal processing.
Received: 29 September 2012      Published: 04 March 2013
PACS:  42.81.Gs (Birefringence, polarization)  
  42.81.Wg (Other fiber-optical devices)  
  42.25.Ja (Polarization)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/1/014205       OR      https://cpl.iphy.ac.cn/Y2013/V30/I1/014205
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Zheng-Yong
WU Chong-Qing
WANG Zhi-Hao
QIN Tao
WANG Yi-Xu
[1] Peng C Z, Zhang J, Yang D, Gao W B, Ma H X, Yin H, Zeng H P, Yang T, Wang X B and Pan J W 2007 Phys. Rev. Lett. 98 010505
[2] Muga N, Pinto A, Ferreira M and Rocha J 2006 IEEE J. Lightwave Technol. 24 3932
[3] Li Z Y, Wu C Q, Dong H and Shum P 2007 Opt. Lett. 32 2900
[4] Dong H, Wu C Q, Fu S N 2004 Chin. Phys. B 13 1291
[5] Fu S N, Wu C Q, Liu H T, Shum P and Dong H 2003 Chin. Phys. B 12 1423
[6] Li Z Y, Wu C Q, Yang S S and Tian C Y 2008 Chin. Phys. Lett. 25 1325
[7] Yao L, Huang H, Chen J, Tan E and Willner A 2012 Opt. Express 20 1691
[8] Yoshino T, Yokota M, Kenmochi T 2003 Electron. Lett. 39 1800
[9] Kidoh Y, Suematsu Y and Furuya K 1981 IEEE J. Quantum Electron. 17 991
[10] Pang M and Jin W 2011 Opt. Lett. 36 16
[11] Hirabayashi K and Amano C 2003 IEEE J. Lightwave Technol. 21 2162
[12] Li Z Y, Wu C Q, Dong H and Shum P 2008 Opt. Express 16 3955
Related articles from Frontiers Journals
[1] Demissie Gelmecha, Jun-Qing Li Merhawit Teklu. Pulse Propagation with Self-Phase Modulation in Nonlinear Chiral Fiber and Its Applications[J]. Chin. Phys. Lett., 2016, 33(09): 014205
[2] LU Bao-Le, HUANG Sheng-Hong, YIN Mo-Juan, CHEN Hao-Wei, REN Zhao-Yu, BAI Jin-Tao. Wavelength-Tunable Single Frequency Ytterbium-Doped Fiber Laser with Loop Mirror Filter[J]. Chin. Phys. Lett., 2015, 32(4): 014205
[3] XIONG Yu-Peng, SU Rong-Tao, LI Xiao, HOU Pu, WANG Xiao-Lin, XU Xiao-Jun. Adaptive Polarization Control of Fiber Amplifier Based on SPGD Algorithm[J]. Chin. Phys. Lett., 2012, 29(12): 014205
[4] ZHANG Wei-Nan, LI Can, MO Shu-Pei, YANG Chang-Sheng, FENG Zhou-Ming, XU Shan-Hui, SHEN Shao-Xiong, PENG Ming-Ying, ZHANG Qin-Yuan, and YANG Zhong-Min. A Compact Low Noise Single Frequency Linearly Polarized DBR Fiber Laser at 1550 nm[J]. Chin. Phys. Lett., 2012, 29(8): 014205
[5] SHANG Chao, WU Chong-Qing**, LI Zheng-Yong, YANG Shuang-Shou** . A New Distributed Measurement of Birefringence Vectors by P-OTDR Assisted by a High Speed Polarization Analyzer[J]. Chin. Phys. Lett., 2011, 28(9): 014205
[6] ZHANG Xuan, CHEN Shu-Wen, LIAO Qing-Hua**, YU Tian-Bao, LIU Nian-Hua, HUANG Yong-Zhen . Design of a Novel Polarized Beam Splitter Based on a Two-Dimensional Photonic Crystal Resonator Cavity[J]. Chin. Phys. Lett., 2011, 28(8): 014205
[7] WANG Jing-Li, **, YAO Jian-Quan, CHEN He-Ming, LI Zhong-Yang . A Simple Birefringent Terahertz Waveguide Based on Polymer Elliptical Tube[J]. Chin. Phys. Lett., 2011, 28(1): 014205
[8] LI Zheng-Yong, WU Chong-Qing, SHANG Chao, YU Xiang-Zhi . Mueller-Matrix-Based Differential Rotation Method for Precise Measurement of Fiber Birefringence Vector[J]. Chin. Phys. Lett., 2010, 27(10): 014205
[9] HUANG Xiao-Dong, WANG Jian-Jun, LI Ming-Zhong, XU Dang-Peng, LIN Hong-Huan, ZHANG Rui, DENG Ying, ZHANG Xiao-Min, ZHAO Sheng-Zhi . FM-AM Conversion Induced by Polarization Mode Dispersion in Fiber Systems[J]. Chin. Phys. Lett., 2010, 27(10): 014205
[10] FU Bo, LI Shu-Guang, YAO Yan-Yan, ZHANG Lei, ZHANG Mei-Yan. Supercontinuum Generation with High Birefringence SF6 Soft Glass Photonic Crystal Fibers[J]. Chin. Phys. Lett., 2010, 27(7): 014205
[11] ZHOU Hong-Song, LI Shu-Guang, FU Bo, YAO Yan-Yan, ZHANG Lei. A Kind of Double-Cladding Photonic Crystal Fiber with High Birefringence and Two Zero-Dispersion Wavelengths[J]. Chin. Phys. Lett., 2010, 27(1): 014205
[12] FENG Su-Chun, XU Ou, LU Shao-Hua, JIAN Shui-Sheng. Switchable Multi-Wavelength Erbium-Doped Fiber Lasers based on a Mach-Zehnder Interferometer Using a Twin-Core Fiber[J]. Chin. Phys. Lett., 2009, 26(6): 014205
[13] WANG Lin, YAN Feng-Ping, MAO Xiang-Qiao, JIAN Shui-Sheng. Stable Dual-Wavelength Fibre Laser with Bragg Gratings Fabricated in a Polarization-Maintaining Erbium-Doped Fibre[J]. Chin. Phys. Lett., 2008, 25(12): 014205
[14] CHENG Mu, WU Chong-Qing, LIU Hua. Cascaded Optical Buffer Based on Nonlinear Polarization Rotation in Semiconductor Optical Amplifiers[J]. Chin. Phys. Lett., 2008, 25(11): 014205
[15] YANG Shuang-Shou, WU Chong-Qing, LI Zheng-Yong, ZHANG Ren-Yuan, MENG Qing-Wen. Distributed Measurement of Birefringence by P-OTDR Assisted with Piezoelectric Polarization Controller[J]. Chin. Phys. Lett., 2008, 25(9): 014205
Viewed
Full text


Abstract