Chin. Phys. Lett.  2013, Vol. 30 Issue (1): 013702    DOI: 10.1088/0256-307X/30/1/013702
ATOMIC AND MOLECULAR PHYSICS |
Demonstration of Cold 40Ca+ Ions Confined in a Microscopic Surface-Electrode Ion Trap
CHEN Liang1, WAN Wei1,2, XIE Yi1,2, WU Hao-Yu1,2, ZHOU Fei1, FENG Mang1**
1State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071
2University of Chinese Academy of Sciences, Beijing 100049
Cite this article:   
CHEN Liang, WAN Wei, XIE Yi et al  2013 Chin. Phys. Lett. 30 013702
Download: PDF(605KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract 40Ca+ ions are successfully confined, under the cooling of a red-detuned laser, in a home-built microscopic surface-electrode (MSE) trap. With all electrodes deposited on a low-rf-loss substrate, our 500-μm-scale MSE trap is designed involving three potential wells and manufactured by the standard technique of the printed circuit board. Both linear and two-dimensional crystals of 40Ca+ are observed in the trap after preliminary micromotion compensation is carried out. The development of the MSE trap aims at large-scale trapped-ion quantum information processing.
Received: 18 October 2012      Published: 04 March 2013
PACS:  37.10.Ty (Ion trapping)  
  03.67.Lx (Quantum computation architectures and implementations)  
  41.20.-q (Applied classical electromagnetism)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/1/013702       OR      https://cpl.iphy.ac.cn/Y2013/V30/I1/013702
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CHEN Liang
WAN Wei
XIE Yi
WU Hao-Yu
ZHOU Fei
FENG Mang
[1] Cirac J I and Zoller P 1995 Phys. Rev. Lett. 74 4091
[2] Monz T, Schindler P, Barreiro J T, Chwalla M, Nigg D, Coish W A, Harlander M, H?nsel W, Hennrich M and Blatt R 2011 Phys. Rev. Lett. 106 130506
[3] Wineland D, Bergquist J, Itano W and Drullinger R 1980 Opt. Lett. 5 245
[4] Nagourney W, Sandberg J and Dehmelt H 1986 Phys. Rev. Lett. 56 2797
[5] Bollinger J J, Heinzen D J, Itano W M, Gilbert S and Wineland D J 1991 IEEE Trans. Instrum. Meas. 40 126
[6] Hume D B, Tosenband T and Wineland D J 2007 Phys. Rev. Lett. 99 120502
[7] Kielpinski D, Monroe C and Wineland D J 2002 Nature 417 709
[8] Rowe M A M, Ben-kish A, Demarco B, Leibfried D, Meyer V, Beall J, Britton J, Hughes J, Itano W M, Jelenkovi? B, Langer C, Rosenband T and Wineland D J 2002 Quantum Inf. Comput. 2 257
[9] Hensinger W K, Olmschenk S, Stick D, Hucul D, Yeo M, Acton M, Deslauriers L and Monroe C 2006 Appl. Phys. Lett. 88 034101
[10] Blakestad R B, Ospelkaus C, VanDevender A P, Amini J M, Britton J, Leibfried D and Wineland D J 2009 Phys. Rev. Lett. 102 153002
[11] Amini J M, Uys H, Wesenberg J, Seidelin S, Britton J W, Bollinger J J, Leibfried D, Ospelkaus C, VanDevender A P and Wineland D J 2010 New J. Phys. 12 033031
[12] DiVincenzo D P 2011 Science 334 50
[13] Chiaverini J, Blakestad R B, Britton J, Jost J D, Langer C, Leibfried D, Ozeri R and Wineland D J 2005 Quantum Inf. Comput. 5 419
[14] Seidelin S, Chiaverini J, Reichle R, Bollinger J J, Leibfried D, Britton J, Wesenberg J H, Blakestad R B, Epstein R J, Hume D B, Itano W M, Jost J D, Langer C, Ozeri R, Shiga N and Wineland D J 2006 Phys. Rev. Lett. 96 253003
[15] Brown K R, Clark R J, Labaziewicz J, Richerme P, Leibrandt D R and Chuang I L 2007 Phys. Rev. A 75 015401
[16] Splatt F, Harlander M, Brownnutt M, Z?ringer F, Blatt R and H?sel W 2009 New J. Phys. 11 103008
[17] Tanaka U, Naka R, Iwata F, Ujimaru T, Brown K R, Chuang I L and Urabe S 2009 J. Phys. B 42 154006
[18] Pearson C E, Leibrandt D R, Bakr W S, Mallard W J, Brown K R and Chuang I L 2006 Phys. Rev. A 73 032307
[19] Liang C, Wei W, Yi X, Fei Z and Mang F 2012 Chin. Phys. Lett. 29 033701
[20] Berkeland D J, Miller J D, Bergquist J C, Itano W M and Wineland D J 1998 J. Appl. Phys. 83 5025
[21] Schuck C, Almendros M, Rohde F, Hennrich M and Eschner J 2010 Appl. Phys. B 100 765
[22] Diedrich F, Bergquist J C, Itano W M and Wineland D J 1989 Phys. Rev. Lett. 62 403
[23] Szymanski B, Dubessy R, Dubost B, Guibal S, Likforman J P and Guidoni L 2012 Appl. Phys. Lett. bf 100 171110
[24] Porras D and Cirac J I 2004 Phys. Rev. Lett. 93 263602
[25] Porras D and Cirac J I 2006 Phys. Rev. Lett. 96 250501
[26] Briegel H J and Raussendorf R 2001 Phys. Rev. Lett. 86 910
[27] Briegel H J, Browne D E, D ür W, Raussendorf R and van den Nest M 2009 Nat. Phys. 5 19
[28] Nielsen M A 2006 Rep. Math. Phys. 57 147
Related articles from Frontiers Journals
[1] Peng-Peng Zhou, Shao-Long Chen, Shi-Yong Liang, Wei Sun, Huan-Yao Sun, Yao Huang, Hua Guan, and Ke-Lin Gao. Significantly Improving the Escape Time of a Single $^{40}$Ca$^+$ Ion in a Linear Paul Trap by Fast Switching of the Endcap Voltage[J]. Chin. Phys. Lett., 2020, 37(9): 013702
[2] Y.-K. Wu  and L.-M. Duan. A Two-Dimensional Architecture for Fast Large-Scale Trapped-Ion Quantum Computing[J]. Chin. Phys. Lett., 2020, 37(7): 013702
[3] Ji Li, Liang Chen, Yi-He Chen, Zhi-Chao Liu, Hang Zhang, Mang Feng. Three-Dimensional Compensation for Minimizing Heating of the Ion in Surface-Electrode Trap[J]. Chin. Phys. Lett., 2020, 37(5): 013702
[4] Hai-Xia Li, Min Li, Qian-Yu Zhang, Xin Tong. Secular Motion Frequencies of $^{9}$Be$^{+}$ Ions and $^{40}$Ca$^{+}$ Ions in Bi-component Coulomb Crystals[J]. Chin. Phys. Lett., 2019, 36(7): 013702
[5] Meng-Yan Zeng, Yao Huang, Hu Shao, Miao Wang, Hua-Qing Zhang, Bao-Lin Zhang, Hua Guan, Ke-Lin Gao. Improvement of Stability of $^{40}$Ca$^{+}$ Optical Clock with State Preparation[J]. Chin. Phys. Lett., 2018, 35(7): 013702
[6] Jiu-Zhou He, Lei-Lei Yan, Liang Chen, Ji Li, Mang Feng. Measurement of Heating Rates in a Microscopic Surface-Electrode Ion Trap[J]. Chin. Phys. Lett., 2017, 34(6): 013702
[7] Jie Zhang, Ke Deng, Jun Luo, Ze-Huang Lu. Direct Laser Cooling Al$^+$ Ion Optical Clocks[J]. Chin. Phys. Lett., 2017, 34(5): 013702
[8] Jun-Juan Shang, Kai-Feng Cui, Jian Cao, Shao-Mao Wang, Si-Jia Chao, Hua-Lin Shu, Xue-Ren Huang. Sympathetic Cooling of $^{40}$Ca$^+$–$^{27}$Al$^+$ Ion Pair Crystal in a Linear Paul Trap[J]. Chin. Phys. Lett., 2016, 33(10): 013702
[9] Zhi-Hui Yang, Hao Liu, Yue-Hong He, Man Wang, Yong-Quan Wan, Yi-He Chen, Lei She, Jiao-Mei Li. Optimal Microwave Radiation Field Parameters for Mercury Ion Microwave Frequency Standards[J]. Chin. Phys. Lett., 2016, 33(06): 013702
[10] CHEN Ting, DU Li-Jun, SONG Hong-Fang, LIU Pei-Liang, HUANG Yao, TONG Xin, GUAN Hua, GAO Ke-Lin. Preparation of Ultracold Li+ Ions by Sympathetic Cooling in a Linear Paul Trap[J]. Chin. Phys. Lett., 2015, 32(08): 013702
[11] ZHANG Jian-Wei, MIAO Kai, WANG Li-Jun. Dick Effect in a Microwave Frequency Standard Based on Laser-Cooled 113Cd+ Ions[J]. Chin. Phys. Lett., 2015, 32(01): 013702
[12] LIU Wei, CHEN Shu-Ming, CHEN Ping-Xing, WU Wei. Design Optimization for Anharmonic Linear Surface-Electrode Ion Trap[J]. Chin. Phys. Lett., 2014, 31(11): 013702
[13] LIU Pei-Liang, HUANG Yao, BIAN Wu, SHAO Hu, QIAN Yuan, GUAN Hua, GAO Ke-Lin. Preliminary Frequency Comparison of Two 40Ca+ Optical Frequency Standards[J]. Chin. Phys. Lett., 2014, 31(11): 013702
[14] LIU Hao, YANG Yu-Na, HE Yue-Hong, LI Hai-Xia, CHEN Yi-He, SHE Lei, LI Jiao-Mei. Microwave-Optical Double-Resonance Spectroscopy Experiment of 199Hg+ Ground State Hyperfine Splitting in a Linear Ion Trap[J]. Chin. Phys. Lett., 2014, 31(06): 013702
[15] CAO Jian, TONG Xin, CUI Kai-Feng, SHANG Jun-Juan, SHU Hua-Lin, HUANG Xue-Ren. Simulation and Optimization of Miniature Ring-Endcap Ion Traps[J]. Chin. Phys. Lett., 2014, 31(04): 013702
Viewed
Full text


Abstract