NUCLEAR PHYSICS |
|
|
|
|
Cluster Structure in Be Isotopes within Point-Coupling Covariant Density Functional |
TANG Zhong-Hua, LI Jia-Xing**, JI Juan-Xia, ZHOU Tao |
School of Physical Science and Technology, Southwest University, Chongqing 400715
|
|
Cite this article: |
TANG Zhong-Hua, LI Jia-Xing, JI Juan-Xia et al 2013 Chin. Phys. Lett. 30 012101 |
|
|
Abstract The potential energy surfaces and density distributions of ground states in even-mass Be isotopes are studied by using the point-coupling covariant density functional theory with the PC-F1 effective interaction. The clustering structure is exhibited automatically in most of the Be isotopes. The results indicate that 6Be has an α+2p clustering structure, while 8,10,14Be have the 2α clustering structure. The α–α distances and the corresponding quadrupole deformation parameters have a similar evolution trend against the neutron number.
|
|
Received: 01 June 2012
Published: 04 March 2013
|
|
PACS: |
21.60.Jz
|
(Nuclear Density Functional Theory and extensions (includes Hartree-Fock and random-phase approximations))
|
|
21.60.Gx
|
(Cluster models)
|
|
21.10.Gv
|
(Nucleon distributions and halo features)
|
|
21.10.Pc
|
(Single-particle levels and strength functions)
|
|
|
|
|
[1] Wheeler J A 1937 Phys. Rev. 52 1083 [2] Wheeler J A 1937 Phys. Rev. 52 1107 [3] Fulton B R 1994 Z. Phys. A 349 227 [4] von Oertzen W, Freer M and Kanada-En'yo Y 2006 Phys. Rep. 432 43 [5] Geng L S, Meng J and Toki H 2007 Chin. Phys. Lett. 24 1865 [6] Zhang W et al 2010 Chin. Phys. Lett. 27 102103 [7] Freer M, Merchant A C 1997 J. Phys. G 23 261 [8] Kanada-En'yo Y and Horiuchi H 2001 Prog. Theor. Phys. Suppl. 142 205 [9] Horiuchi H and Kanada-En'yo Y 1997 Nucl. Phys. A 616 394 [10] Seya M, Kohno M and Nagata S 1981 Prog. Theor. Phys. 65 204 [11] Fedotov S I et al 2004 Phys. Rev. C 70 014006 [12] Ichikawa T et al 2011 Phys. Rev. Lett. 107 112501 [13] Buck B et al 1995 Phys. Rev. C 52 1840 [14] Taniguchi Y, Kanada-En'yo Y and Kimura M 2009 Phys. Rev. C 80 044316 [15] Taniguchi Y et al 2007 Phys. Rev. C 76 044317 [16] Saito A et al 2010 Mod. Phys. Lett. A 25 1858 [17] Ye Y L et al 2005 J. Phys. G 31 S1647 [18] Jia F et al 2009 Chin. Phys. Lett. 26 032301 [19] Ye Y L et al 2012 Chin. Phys. C 36 127 [20] Mangelson N et al 1966 Nucl. Phys. 88 137 [21] Buck B, Friedrich H, Wheatley C 1977 Nucl. Phys. A 275 246 [22] Ashwood N I et al 2004 Phys. Lett. B 580 129 [23] Kanada-En'yo Y and Kimura M 2010 Lect. Notes Phys. 818 129 [24] Neff T, Feldmeier H and Roth R 2005 Nucl. Phys. A 752 321 [25] Descouvemont P and Baye D 2001 Phys. Lett. B 505 71 [26] Duarte S B et al 2002 At. Data Nucl. DataTables 80 235 [27] Yan T Z et al 2007 Chin. Phys. B 16 2676 [28] Qian Y B et al 2010 Chin. Phys. Lett. 27 112301 [29] Ren Z Z, Xu C and Wang Z J 2004 Phys. Rev. C 70 034304 [30] Ni D D and Ren Z Z 2011 Phys. Rev. C 83 014310 [31] Bender M, Heenen P H and Reinhard P G 2003 Rev. Mod. Phys. 75 121 [32] Fayans S A et al 2000 Nucl. Phys. A 676 49 [33] Vretenar D et al 2005 Phys. Rep. 409 101 [34] Meng J et al 2006 Prog. Part. Nucl. Phys. 57 470 [35] Arumugam P et al 2005 Phys. Rev. C 71 064308 [36] Zhong M F et al 2010 Chin. Phys. Lett. 27 022103 [37] Ebran J P et al 2012 Nature 487 341 [38] Zhao P W et al 2010 Phys. Rev. C 82 054319 [39] Yao J M et al 2009 Phys. Rev. C 79 044312 [40] Yao J M et al 2010 Phys. Rev. C 81 044311 [41] Nik?i? T et al 2009 Phys. Rev. C 79 034303 [42] Zhao P W et al 2011 Phys. Rev. Lett. 107 122501 [43] Bürvenich T et al 2002 Phys. Rev. C 65 044308 [44] Xiang J et al 2012 Nucl. Phys. A 873 1 [45] Ring P and Schuck P 1980 Nuclear Many-body Problem (Heidelberg: Springer) p 268 [46] Yao J M et al 2011 Phys. Rev. C 84 024306 [47] National Nuclear Data Center Brookhaven National Laboratory http://www.nndc.bnl.gov/ [48] Ren Z Z et al 1995 Phys. Lett. B 351 11 [49] Sugahara Y et al 1996 Prog. Theor. Phys. 96 1165 [50] Yao J M, Bender M and Heenen P H 2012 arXiv:1211.2103v1[nucl-th] [51] Yao J M et al 2012 Phys. Rev. C 86 014310 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|