Chin. Phys. Lett.  2012, Vol. 29 Issue (6): 068101    DOI: 10.1088/0256-307X/29/6/068101
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Green Emission from a Strain-Modulated InGaN Active Layer
WANG Guo-Biao1, XIONG Huan1, LIN You-Xi1, FANG Zhi-Lai1**, KANG Jun-Yong1, DUAN Yu2, SHEN Wen-Zhong2
1Semiconductor Photonics Research Center, Department of Physics, Xiamen University, Xiamen 361005
2Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Department of Physics, Shanghai Jiao Tong University, Shanghai 200240
Cite this article:   
WANG Guo-Biao, XIONG Huan, LIN You-Xi et al  2012 Chin. Phys. Lett. 29 068101
Download: PDF(1045KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Strain-induced quantum dots (QDs) like island formations are demonstrated to effectively suppress pits/dislocation generation in high indium content (26.8%) InGaN active layers. In addition to the strain redistribution in the QD-like islands, strain modulation on the InGaN active layers by using the GaN island capping is employed to form an increased surface potential barrier around the dislocation cores, which inhibits the carrier transport to the surrounding dislocations. Cathodoluminescence shows distinct double-peak emissions at 503 nm and 444 nm, corresponding to the In-rich QD-like emission and the normal quantum well emission, respectively. The QD-like emission becomes dominated in photoluminescence due to the carrier localization effect of In-rich InGaN QDs at relatively low "carrier injection current". Accordingly, green emission may be enhanced by the following origins: (1) reduction in pits/dislocations density, (2) carrier localization and strain reduction in QDs, (3) strain modulation by GaN island capping, (4) enhanced light extraction with faceted GaN islands on the surface.
Received: 09 January 2012      Published: 31 May 2012
PACS:  81.07.-b (Nanoscale materials and structures: fabrication and characterization)  
  81.05.Ea (III-V semiconductors)  
  78.67.-n (Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)  
  68.65.-k (Low-dimensional, mesoscopic, nanoscale and other related systems: structure and nonelectronic properties)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/6/068101       OR      https://cpl.iphy.ac.cn/Y2012/V29/I6/068101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Guo-Biao
XIONG Huan
LIN You-Xi
FANG Zhi-Lai
KANG Jun-Yong
DUAN Yu
SHEN Wen-Zhong
[1] Schubert E F and Kim J K 2005 Science 308 1274
[2] Schubert E F, Kim J K, Luo H and Xi J Q 2006 Rep. Prog. Phys. 69 3069
[3] Humphreys C J 2008 MRS Bull. 33 459
[4] Fang Z L 2011 Nanotechnology 22 315706
[5] Lin Y S, Ma K J, Hsu C, Feng S W, Cheng Y C, Liao C C, Yang C C, Chou C C, Lee C M and Chyi J I 2000 Appl. Phys. Lett. 77 2988
[6] Li T, Fischer A M, Wei Q Y, Ponce F A, Detchprohm T and Wetzel C 2010 Appl. Phys. Lett. 96 031906
[7] Feneberg M and Thonke K 2007 J. Phys.: Condens. Matter 19 403201
[8] Schubert M F, Xu J, Kim J K, Schubert E F, Kim M H, Yoon S, Lee S M, Sone C, Sakong T and Park Y 2008 Appl. Phys. Lett. 93 041102
[9] Park E H, Kang D N H, Ferguson I T, Park S K and Yoo T K 2007 Appl. Phys. Lett. 90 031102
[10] Zhao H P, Arif R A and Tansu N 2009 IEEE J. Sel. Top. Quantum Electron. 15 1104
[11] Lin Y X and Fang Z L 2011 Appl. Phys. A 103 317
[12] Feezell D F, Schmidt M C, Denbaars S P and Nakamura S 2009 MRS Bull. 34 318
[13] Fang Z L, Lin Y X and Kang J Y 2011 Appl. Phys. Lett. 98 061911
[14] Schulz S and O'Reilly E P 2010 Phys. Rev. B 82 033411
[15] Arakawa Y 2002 IEEE J. Sel. Top. Quantum Electron. 8 823
[16] Fang Z L, Kang J Y and Shen W Z 2009 Nanotechnology 20 045401
[17] Fang Z L, Lin D Q, Kang J Y, Kong J F and Shen W Z 2009 Nanotechnology 20 235401
[18] Oliver R A, Sumner J, Kappers M J and Humphreys C J 2009 J. Appl. Phys. 106 054309
[19] Tersoff J and LeGoues F K 1994 Phys. Rev. Lett. 72 3570
[20] Koleske D D, Wickenden A E, Henry R L, Culbertson J C and Twigg M E 2001 J. Cryst. Growth 223 466
Related articles from Frontiers Journals
[1] Chi Ding, Junjie Wang, Yu Han, Jianan Yuan, Hao Gao, and Jian Sun. High Energy Density Polymeric Nitrogen Nanotubes inside Carbon Nanotubes[J]. Chin. Phys. Lett., 2022, 39(3): 068101
[2] Xunheng Ye , Jiawei Shen , Xiangming Tao , Gaoxiang Ye , and Bo Yang. Au Films Composed of Nanoparticles Fabricated on Liquid Surfaces for SERS[J]. Chin. Phys. Lett., 2021, 38(3): 068101
[3] Shuo Yang, Zhenpeng Hu, Weihai Wang, Peng Cheng, Lan Chen, and Kehui Wu. Regular Arrangement of Two-Dimensional Clusters of Blue Phosphorene on Ag(111)[J]. Chin. Phys. Lett., 2020, 37(9): 068101
[4] Ai-Qi Zhang , Qi-Liang Wang , Ying Gao , Shao-Heng Cheng, Hong-Dong Li . Gold-Nanoparticles/Boron-Doped-Diamond Composites as Surface-Enhanced Raman Scattering Substrates *[J]. Chin. Phys. Lett., 0, (): 068101
[5] Ai-Qi Zhang , Qi-Liang Wang , Ying Gao , Shao-Heng Cheng, Hong-Dong Li . Gold-Nanoparticles/Boron-Doped-Diamond Composites as Surface-Enhanced Raman Scattering Substrates[J]. Chin. Phys. Lett., 2020, 37(6): 068101
[6] Li Dong, Aiwei Wang, En Li, Qin Wang, Geng Li, Qing Huan, Hong-Jun Gao. Formation of Two-Dimensional AgTe Monolayer Atomic Crystal on Ag(111) Substrate[J]. Chin. Phys. Lett., 2019, 36(2): 068101
[7] Chuan-Biao Zhang, Dian-Qiang Su, Zhong-Hua Ji, Yan-Ting Zhao, Lian-Tuan Xiao, Suo-Tang Jia. Erratum and Note: Measurement of Zeeman Shift of Cesium Atoms Using an Optical Nanofiber [Chin. Phys. Lett. 35(2018)083201][J]. Chin. Phys. Lett., 2018, 35(12): 068101
[8] Chuan-Biao Zhang, Dian-Qiang Su, Zhong-Hua Ji, Yan-Ting Zhao, Lian-Tuan Xiao, Suo-Tang Jia. Measurement of Zeeman Shift of Cesium Atoms Using an Optical Nanofiber[J]. Chin. Phys. Lett., 2018, 35(8): 068101
[9] Bahram Khoshnevisan, Mohammad Bagher Marami, Majid Farahmandjou. Fe$^{3+}$-Doped Anatase TiO$_{2}$ Study Prepared by New Sol-Gel Precursors[J]. Chin. Phys. Lett., 2018, 35(2): 068101
[10] Li-Bo Fang, Wei Pan, Si-Hua Zhong, Wen-Zhong Shen. Nonresonant and Resonant Nonlinear Absorption of CdSe-Based Nanoplatelets[J]. Chin. Phys. Lett., 2017, 34(9): 068101
[11] Zhi-Gang Wang, Fei Pang. Poisoning of MoO$_{3}$ Precursor on Monolayer MoS$_{2}$ Nanosheets Growth by Tellurium-Assisted Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2017, 34(8): 068101
[12] Zhu-Liang Wang, Hui Ma, Fang Wang, Min Li, Li-Guo Zhang, Xiao-Hong Xu. Controllable Synthesis and Magnetic Properties of Monodisperse Fe$_{3}$O$_{4}$ Nanoparticles[J]. Chin. Phys. Lett., 2016, 33(10): 068101
[13] WU Dong-Xu, CHENG Hong-Bin, ZHENG Xue-Jun, WANG Xian-Ying, WANG Ding, LI Jia. Fabrication and Piezoelectric Characterization of Single Crystalline GaN Nanobelts[J]. Chin. Phys. Lett., 2015, 32(10): 068101
[14] ZHAO Mei, DONG Li-Feng, LI Cheng-Dong, YU Li-Yan, LI Ping. A Facile Route to Cotton-Like BiOCl Nanomaterial with Enhanced Dye-Sensitized Visible Light Photocatalytic Efficiency[J]. Chin. Phys. Lett., 2015, 32(09): 068101
[15] FAN Xi, CHEN Hou-Peng, WANG Qian, WANG Yue-Qing, LV Shi-Long, LIU Yan, SONG Zhi-Tang, FENG Gao-Ming, LIU Bo. Set Programming Method and Performance Improvement of Phase Change Random Access Memory Arrays[J]. Chin. Phys. Lett., 2015, 32(06): 068101
Viewed
Full text


Abstract