Chin. Phys. Lett.  2012, Vol. 29 Issue (5): 050201    DOI: 10.1088/0256-307X/29/5/050201
GENERAL |
A New Class of Scaling Correction Methods
MEI Li-Jie1,WU Xin1**,LIU Fu-Yao2
1School of Science, Nanchang University, Nanchang 330031
2Department of Applied Mathematics, Shanghai Lixin University of Commerce, Shanghai 201600
Cite this article:   
MEI Li-Jie, WU Xin**, LIU Fu-Yao 2012 Chin. Phys. Lett. 29 050201
Download: PDF(882KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

When conventional integrators like Runge–Kutta-type algorithms are used, numerical errors can make an orbit deviate from a hypersurface determined by many constraints, which leads to unreliable numerical solutions. Scaling correction methods are a powerful tool to avoid this. We focus on their applications, and also develop a family of new velocity multiple scaling correction methods where scale factors only act on the related components of the integrated momenta. They can preserve exactly some first integrals of motion in discrete or continuous dynamical systems, so that rapid growth of roundoff or truncation errors is suppressed significantly.

Keywords: 02.70.-c      05.10.-a      45.10.-b     
Received: 19 July 2011      Published: 30 April 2012
PACS:  02.70.-c (Computational techniques; simulations)  
  05.10.-a (Computational methods in statistical physics and nonlinear dynamics)  
  45.10.-b (Computational methods in classical mechanics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/5/050201       OR      https://cpl.iphy.ac.cn/Y2012/V29/I5/050201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
MEI Li-Jie
WU Xin**
LIU Fu-Yao

[1] Feng K and Qin M Z 2010 Symplectic Geometric Algorithms for Hamiltonian Systems 1st edn (Berlin: Springer)

[2] Zhong S Y, Wu X, Liu S Q and Deng X F 2010 Phys. Rev. D 82 124040

[3] Li R and Wu X 2011 Chin. Phys. Lett. 28 070201

[4] Li R and Wu X 2010 Sci. Chin. Phys. Mech. Astron. 53 1600

[5] Li R and Wu X 2010 Acta. Phys. Sin. 59 7135 (in Chinese)

[6] Sun W, Wu X and Huang G Q 2011 Res. Astron. Astrophys. 11 353

[7] Xu J and Wu X 2010 Res. Astron. Astrophys. 10 173

[8] Nacozy P E 1971 Astrophys. Space Sci. 14 40

[9] Baumgarte J 1972 Celest. Mech. 4 490

[10] Murrson M A 1989 Astron. J. 97 1496

[11] Zhsng K 1996 Comput. Phys. Commun. 99 53

[12] Wu X, Zhu J F, He J Z and Zhang H 2006 Comput. Phys. Commun. 175 15

[13] Wu X and He J Z 2006 Int. J. Mod. Phys. C 17 1613

[14] Wu X, Huang T Y, Wan X S and Zhang H 2007 Astron. J. 133 2643

[15] Han W B and Liao X H 2007 Comput. Phys. Commun. 177 500

[16] Ma D Z, Wu X and Zhong S Y 2008 Astrophys. J. 687 1294

[17] Ma D Z, Wu X and Liu F Y 2008 Int. J. Mod. Phys. C 19 1411

[18] Zhong S Y and Wu X 2009 Astrophys. Space Sci. 324 31

[19] Liu L and Liao X H 1994 Celest. Mech. Dyn. Astron. 59 221

[20] Fukushima T 2003 Astron. J. 126 1097

[21] Fukushima T 2003 Astron. J. 126 2567

[22] Ma D Z, Wu X and Zhu J F 2008 New Astron. 13 216

[23] Zhong S Y and Wu X 2010 Phys. Rev. D 81 104037

[24] Aizawa Y and Saito N 1972 J. Phys. Soc. Jpn. 32 1636

Related articles from Frontiers Journals
[1] LIU Yan, LIU Li-Guang, WANG Hang. Study on Congestion and Bursting in Small-World Networks with Time Delay from the Viewpoint of Nonlinear Dynamics[J]. Chin. Phys. Lett., 2012, 29(6): 050201
[2] WEI Yi-Kun, QIAN Yue-Hong. Reducing Spurious Velocities at the Interfaces of Two-Phase Flows for Lattice Boltzmann Simulations[J]. Chin. Phys. Lett., 2012, 29(6): 050201
[3] XIE Zheng, YI Dong-Yun, OUYANG Zhen-Zheng, LI Dong. Hyperedge Communities and Modularity Reveal Structure for Documents[J]. Chin. Phys. Lett., 2012, 29(3): 050201
[4] LI Rong, WU Xin** . Two New Fourth-Order Three-Stage Symplectic Integrators[J]. Chin. Phys. Lett., 2011, 28(7): 050201
[5] CAO Xian-Bin, DU Wen-Bo, **, CHEN Cai-Long, ZHANG Jun . Effect of Adaptive Delivery Capacity on Networked Traffic Dynamics[J]. Chin. Phys. Lett., 2011, 28(5): 050201
[6] SHI Si-Hong, YUAN Yong, WANG Hui-Qi, LUO Mao-Kang** . Weak Signal Frequency Detection Method Based on Generalized Duffing Oscillator[J]. Chin. Phys. Lett., 2011, 28(4): 050201
[7] LI Guang-Zhao, CHEN Yong-Qi, TANG Guo-Ning**, LIU Jun-Xian . Spiral Wave Dynamics in a Response System Subjected to a Spiral Wave Forcing[J]. Chin. Phys. Lett., 2011, 28(2): 050201
[8] YUAN Xiao-Ping, CHEN Jiang-Xing, ZHAO Ye-Hua**, LOU Qin, WANG Lu-Lu, SHEN Qian . Spiral Wave Generation in a Vortex Electric Field[J]. Chin. Phys. Lett., 2011, 28(10): 050201
[9] YUAN Xiao-Ping, ZHENG Zhi-Gang** . Ground-State Transition in a Two-Dimensional Frenkel–Kontorova Model[J]. Chin. Phys. Lett., 2011, 28(10): 050201
[10] TAN Yun-Liang, TENG Gui-Rong, ZHANG Ze. A Modified LBM Model for Simulating Gas Seepage in Fissured Coal Considering Klinkenberg Effects and Adsorbability-Desorbability[J]. Chin. Phys. Lett., 2010, 27(1): 050201
[11] Osama Yusuf Ababneh, Rokiah@Rozita Ahmad. Construction of Third-Order Diagonal Implicit Runge-Kutta Methods for Stiff Problems[J]. Chin. Phys. Lett., 2009, 26(8): 050201
[12] Mohammad Noh Daud, Gabriel G. Balint-Kurti. A Time-Dependent Wavepacket Method for Photodissociation Dynamics of Triatomic Molecule[J]. Chin. Phys. Lett., 2009, 26(7): 050201
[13] HE Min-Hua, ZHANG Duan-Ming, FANG Pin-Jie, LI Zhi-Cong, WANG Hai-Yan. Criticality of Epidemic Spreading in Mobile Individuals Mediated by Environment[J]. Chin. Phys. Lett., 2009, 26(1): 050201
[14] FU Jing-Li, FU Hao. A Field Method for Integrating Equations of Motion of Nonlinear Mechanico-Electrical Coupling Dynamical Systems[J]. Chin. Phys. Lett., 2008, 25(9): 050201
[15] LU Wei-Tao, ZHANG Hua, WANG Shun-Jin. Application of Symplectic Algebraic Dynamics Algorithm to Circular Restricted Three-Body Problem[J]. Chin. Phys. Lett., 2008, 25(7): 050201
Viewed
Full text


Abstract